
An Industrial Experience in Comparing Manual vs. Automatic

Test Cases Generation

Francesca Basanieri
ISTI – CNR Pisa

Via Moruzzi 1
56124 Pisa

francesca.basanieri@
isti.cnr.it

Pierpaolo Iani
Ericsson Lab Italy SpA

Via Cadorna, 73
20090 Vimodrone

Milano
pierpaolo.iani@
eri.ericsson.se

Gaetano Lombardi
Ericsson Lab Italy SpA

Via Anagnina, 203
00040 Roma

gaetano.lombardi@
eri.ericsson.se

Eda Marchetti
ISTI – CNR Pisa

Via Moruzzi 1
56124 Pisa

eda.marchetti@
isti.cnr.it

Abstract.

We present our experience in automatically deriving a
detailed test case plan exclusively using the UML
diagrams developed during the analysis and design
phases. We consider in particular the Integration Testing
of some new functionalities to be added to an Ericsson
Lab Italy (ERI) existing system. In particular we compare
the obtained test plan with the “official” one, which was
manually derived in an independent manner by the ERI
personnel, highlighting their respective characteristics
and weaknesses.

1. Introduction

In recent years, the object oriented (OO) paradigm has
gained widespread use in both industry and universities .
The reason for such popularity is mainly the natural
correspondence between system components and objects
defined by the distinctive features of OO: encapsulation
and inheritance. Moreover, the graphical notation adopted
by OO models facilitates system analysis and the
representation of various design aspects at different levels
of abstraction. UML, the Unified Modelling Language
[15], is de facto the OO standard notation and nowadays
is being widely adopted in industrial design practice for
the modelling and specification of systems throughout all
phases of the development process. Although a large
body of literature exists on using UML in design, only a
relatively small portion is devoted to its application in
testing or provides specific assistance for planning and

generating tests starting from UML descriptions. This
paper deals with UML-based testing. Testing is clearly
an important part of the software development process,
which can impact heavily on the cost and reliability of the
final product. Hence, it is easy to understand that the
search for practical UML-based methods for improving
the effectiveness of software testing has attracted ever-
increasing interest in research

The guiding principle of our research is to take the
same UML diagrams developed for analysis and design,
and apply them, as is, to testing, without the need for any
additional formalism or ad hoc mechanisms specifically
for testing purposes. We have therefore proposed an
original method, called Cow_Suite [2] and implemented
it in a tool, for deriving meaningful test-case suites, right
from the highest-level testing stages, by starting with the
UML diagrams of the system in question. This paper
focuses on the Integration Testing, which is a systematic
process, applied to reveal problems in components
interfaces and their interactions when combined, , after
having been tested in isolation. Thus we illustrate the use
of the Cow_Suite tool, in particular the UIT (Use
Interaction Test) method [2], for automatically deriving
test cases from UML diagrams1. For this we use a real-
world case study provided by Ericsson Lab Italy SpA,
ERI, involving the Integration Test of some new
functional additions to an existing system. Using
Cow_Suite we derived a detailed test case plan, called
UIT test plan for the Integration Testing of these new

1 Cow_Suite tool also implements a strategy for test cases selection
and prioritisation on the base of their importance and effectiveness in
the testing phase but the details of Cow_Suite are beyond the scope of
this paper.

functionalities. The UIT test plan was automatically
derived outside the production processes, exclusively
using the UML diagrams developed during the analysis
and design phases. The ERI personnel had independently
derived another test plan (the “official” one), called ERI
test plan, for the same functionalities. The ERI test plan
was developed manually, following the standard in-house
procedures at ERI and was based mainly on the personal
expertise of the people involved and their knowledge of
the system. We provide here a comparison of the two
tests plans, highlighting their characteristics and
respective weaknesses, focusing on different aspects of
the plans, such as, for example, the time and effort
necessary to draw up the two test plans or the structuring
and the degree of detail of test cases attained for the same
functionality in the two approaches. It is necessary to
specify that it is out of the scope of this paper comparing

the final test cases derived using the two approaches in
terms of number of produced tests or time required to
execute all them nor in terms of detected failures. We
present only our experience in applying automatically the
UIT method in a large-scale system, to derive test cases
and construct a significant test plan; our aim is to report
and to evaluate the main advantages in terms of costs,
schedule and test strategy selection.

The paper is structured as follows. Section 2 presents
the analysed case study while the ERI test strategy is
described in Section 3. Section 4 and 5 deal respectively
with the UIT method and the details of the two test plans
devised. The comparison of the two different test plans
follows in Section 6, while Section 7 draws some
conclusions and provides some indications for future
work.

FirewallFirewall

FirewallFirewall

SNSN

Access nodeAccess node

N A C
(GSM TA)

R N S

Applicat ion
node

Application
node

DMZ at the ISP

H.323-proxy
(H323 TA)

H.323-proxy
(H323 TA)

DMZ at customer LAN

H.323-proxyH.323 -proxy

GSM -ProxyGSM -Proxy

Management
System

Management
System

End Customer LAN
SP/ISP server LAN

AGWAGW

BTS

Voice
Gateway

(NA)

Voice
Gateway

(NA)

Application
node

Applicat ion
node

FirewallFirewall

Voice GatewayVoice Gateway

RTP-proxyRTP -proxy

GSM -proxyGSM -proxy

Internet

ISP Backbone

PSTN

SS7
Gateway

SS7
GatewayPLMN

SP/ISP PoP

PSTN

H L R

MSC
VLR

P
B
X

PSTN

S K U A

S A

Voice
Gateway

(NA)

Voice
Gateway

(NA)

ATK

Plug- In

Figure 1 System Description

2. The Case Study

The case study concerned a project whose aim was to
develop an IP Telephony system to support GSM
communications based on the H.323 architecture [7].
Figure 1 depicts the entire system, together with the
subsystems under ERI responsibility SK, UA, H.323
proxy and the associated plug-in.

The main component of the system is Service Node
(SN) composed by: User Agent (UA) which implements
all the users system functionalities; UserService Agent
(SA) implementing the supplementary services, like
Virtual Private Network, and Call Forwarding;
SiteKeeper (SK), that represents the interface between
the SN and the system access provider. All terminals
enter in the SN through the SK, which performs the
routing for the calls and resources management.

The specific feature used to compare ERI's manual vs.
UIT-based automated test-case definition was the Basic
Routing Enhancements (BRE). This feature represents
an improving of the routing functionality in the GSM on
the Net system, which is a new multimedia system based
on the IP protocol. The upgrade regards mainly extension
of some tables through the addition of new parameters
and the implementation of new functionalities, for
determining the enterprise or the User Agent Group
associated, giving a certain number. As proper
implementation of BRE implies modification of the Site
Keeper and User Agent, an accurate and specific Test
Plan was needed.

3. The ERI Test Strategy

To better illustrate the test strategy adopted by ERI, a
brief description of the project's scope is in order. The
project had to implement eleven features. After careful
analysis the ERI personnel discovered that they were
nearly all independent even if all components were
affected by more than one feature. For this reason, the
project involved the identification of a specific test
strategy per feature with the aim of covering the
requirements as well as the architecture of the system as a
whole. The test strategy defined by the project comprises
nine different testing activities (Table 1), each described
in a specific Test Plan (TP). Nevertheless, not all the
activities were mandatory; each feature had its own test
strategy defining the test activities to be performed. The
purpose of having a specific test strategy for each feature
was to arrive at the best trade-off between quality and
time.

Table 1 Testing Activities Description
Testing

Activities
Characteristics Responsi

bility
Class Test Executed both in static and dynamic mode Design

team
Component
Test (WB)

White Box (WB), aiming at testing the
interfaces among classes

Design
Team

Component
Test (BB)

Black Box (BB), aiming at testing in a
simulated environment the functions
implemented by the component and its
behaviour.

Design
team

Node Test WB WB, aiming at testing the interfaces
among comp onents.

Design
team

Node Test BB BB, aiming at testing in a simulated
environment the functions implemented
by the node and its behaviour.

Design
Team

Feature Test
Pre-
Integration

Functional Test in a simulated
environment using the real code. Its TP is
derived from the detailed requirements.
The main purpose is to deliver to the
Integration & Validation team a feature
running and clean.

Design
team

Feature Test Functional executed in the target
environment. The TP is derived both from
detailed requirements and main
requirements.

Integratio
n &
Validatio
n team
(I&V)

Regression
Test

Mandatory of the end of each feature
delivery

I&V team

Performance
Test, Stability
Test, Negative
Test, Overload
Test,
Characteristic
Test, Capacity
Test

Described in a specific Test Plan. I&V team

In particular the BRE test strategy was to perform five

different testing activities (the last common for all the
features): Class Test; Feature Test Pre Integration;
Feature Test; Regression Test (twice); Performance Test.
For the purposes of illustration, herein we concentrate on

the Pre-integration Test and present and compare the two
different test plans with regard to this aspect of the BRE
testing.

4. Use Interaction Test Strategy

In this section we briefly describe the Use Interaction
Test (UIT) methodology [2] used to derive a set of Test
Cases which is largely inspired to the Category Partition
[11]. UIT systematically constructs and defines the tests
for Integration Testing phase by using the UML diagrams
as its exclusive reference model. In particular UIT is
based on the Sequence Diagrams, which describe how a
Use Case is realized by the interactions among objects
and actors through elaborations and message exchanges
[15]. Very briefly considering a Sequence Diagram a
Messages_Sequence is defined considering each message
with no predecessor association (see [15] for more
details) plus, if existing, all the messages belonging to its
nested activation bounded from the focus of control
region. Thus a Messages_Sequence represents the
performance of an action to be tested and describes the
interaction among objects, characterizing the level of
detail of integration, necessary to realize the
corresponding functionalities. For every derived
Messages_Sequence, UIT identifies then the Interactions
Categories, which are the messages involved, and Setting
Categories, which are all the possible parameters or data
structures that can affect these messages. A Test Case is
formed by a Messages_Sequence plus all the Categories
involved and it is specifically designed to test the
correctness of the messages interactions. Afterwards, by
instantiating the categories values involved in a Test
Case, a set of executable Test Procedures [14] is
obtained. Thus a Test Procedure is defined as a set of
detailed instructions for setting-up, executing, and
evaluating the results of a given test case. In detail, for
each Test Case the possible values that the categories can
assume, called choices, representing: for the Interactions
Categories the list of specific situations in which the
message can occur; for the Settings Categories the set or
range of input data that parameters or data structures can
assume. A Test Procedure is directly generated for each
possible combination of choices, of every categories
involved in a Messages Sequence.

5. Test Plan Description

In the following sections we briefly describe the
structure of the ERI and the UIT Pre Integration Test
Plan.

5.1 ERI Test Plan

The ERI_TP, defined specifically for testing the BRE
functionalities, is essentially a natural language document
describing the test cases configuration, and the test results
expected for the coverage of the BRE requirements. In
drawing up the ERI_TP, the ERI designers base their
decisions solely on their personal knowledge of the
system, both for definition of the test cases and validation
of their accuracy with the respect to the requirements.
The test specifications were in fact defined “manually”
according to the standard in-house procedures at ERI,
without reference to the UML system description;
moreover, no tool or automatic device was applied for
deriving the test cases. Once the test cases were defined,
each test was then assigned to a specific Test Group
representing high-level system functionality and
exploiting by the Project Manager to check the
requirement compliance. In greater details, each test case

is divided into three separate parts: Description,
Precondition and Procedure.

The Description, defining the goal, provides a
description of the environment, the entities involved in
the test and the specific conditions under which the test
should be run. The Precondition delineates, listing them
explicitly in natural language, the values of data
structures, the behaviour that the test case must exhibit,
the actions it is to perform and the conditions required for
test execution. The Procedure part is, in turn, divided into
three sections: Action, Result and Comment. The Action
consists of a brief description of the steps necessary for
constructing the test case and assigning values to its
variables. The Result section describes the expected
outcomes. Finally, the Comment section may contain
some notes or suggestions for a proper execution. In
Figure 2 one of the ERI_TP developed test case is
reported.

Figure 2 ERI_TP Test Case Description

5.2 UIT Test Plan

The UIT_TP is automatically derived applying the
Cow_Suite tool to the UML description of the system.
The methodology can applied right from the early phases
of software development to define Test Cases that can be
further refined with increasing level of the design’s detail.
The UIT_TP can be derived at two different levels of
detail: at Test Cases or at Test Procedures level. At Test
Cases level, UIT_TP specifications can be derived using
exclusively UML diagrams developed during analysis
and design phases, far before the testing phase. Test

Cases construction does not require any specific
knowledge of the system, because it is derived
automatically from the information in UML diagrams
without any additional formalism or ad hoc mechanism
specifically for testing purpose. Each derived Test Case
contains information useful to determining interactions of
the units involved and how to test them. Once derived,
Test Cases are grouped into Use Case Test Suites
(UCTS). Every UCTS is associated to a specific Use
Case and contains the Test Cases generated from all the
Sequence Diagrams linked to the Use Case. The test set
of an UCTS represents the actions necessary in order to

TEST GROUP 1: CALL ESTABLISHMENT WITH ENTERPRISE INFO RMATION
This test group aims to verify that the Control Node is able to establish different kind of calls using the Enterprise information.
TC 1: Basic call from internal user to External Network(EN), Enterprise with PNP, Enterprise determination based on e164 alias
Description
This test is made to verify that the typical call case from user to EN works properly using the information of the Enterprise the user belongs to.
The needed Enterprise determination is performed using the e164 alias in the incoming SETUP message.
Precondition
• The file MasterRoutes.def must contain a row looking like this: 1 (=UA) UAGname 1 (=e164 Route Type) EnterpriseName Digits 0. An
example could be: 1 UAGxxx 1 Ericsson 39067258 0
• A GW is to be added to the Network Topology; this Access Agent must be associated (via a proper Access Group) to a suitable route (let’s
make it for example “39068”) and to the Enterprise the user belongs to. The file MasterRoutes.def could contain for example a row looking like
this: 1 Agxxx 1 Ericsson 39068…
• Another GW is to be added to the Network Topology; this Access Agent must be associated (via a proper Access Group) to the same above
route but to a different Enterprise (let’s make it for example “Nokia”). The file MasterRoutes.def could contain for example a row looking like
this: 1 Agyyy 1 Nokia 39068…
Procedure
Action:
Make a call from the user belonging to the first Enterprise (in our example “Ericsson”) to the above GW. The first digits of the dialled number
must match to the above route (in our example a suitable Called Party Number could be “39068xxxx”).
Result:
The final result is the call termination towards the GW reserved to the Enterprise the user belongs to (in our example to the GW in the AG
“AGxxx”, not “AGyyy”).
Comment:
Only the GWs reserved to the Enterprise can be used for routing calls.

check correct performance of the functionality described
in the Use Case. Figure 3 shows two of the derived TC
for example of UCTS 1 corresponding to the Test Group
1 of ERI_TP reported in Figure 2 .

6. Comparison of Results

In this section we report the comparison between the
two test plans that concerns both contents and
development effort (Section 6.1 and 6.2). It is important
to stress that only the ERI_TP test cases have been
actually executed by ERI testers during the BRE pre-
Integration testing. As said in the Introduction, in this
paper we do not evaluate the effectiveness of the two
plans in terms of fault detection nor time required for the
real execution of test cases. We report only about the pros
and cons of the UIT method in test generation, proving
that it can be considered a valid instrument for defining
test plans in industrial environment.

6.1 Comparison of the Content of Test Plans

Requirements coverage: In the ERI_TP the test cases
were specifically constructed with the aim of covering all
BRE requirements by expert personnel. In UIT_TP the
coverage of the systems requirements is strictly linked to
the Sequence Diagrams construction and information
content. In this case quite a complete UML system
description (and in particular, Sequence Diagrams
specifications) was provided, consequently, as can be
seen in Table 2, UIT_TP provides exactly the same
requirement coverage as ERI_TP. In this table, the rows
represent the different requirements of the BRE
functionality; the columns labelled TG1...TG5 are the test
cases groups in ERI_TP while those labelled
UCTS1…UCTS8 are the set of Test Cases derived from
the Sequence Diagrams associated with a specific Use
Case (UCTS stands for Use Case Test Suite). An “X” in
the cell signifies that a requirement is covered by a test
case.

Expressiveness: I) some of the test cases described in
the ERI_TP and relative to the system exceptions (see
marked rows in Table 3) are not derivable via the UIT
method due to the absence of the relative Sequence
Diagrams. In the UML design, in fact, there are not the
descriptions of the scenarios relative to exceptional
behaviours. In such situation the automatic test derivation
can‘t overcome the “incompleteness” of design; II) in the
UIT_TP some test cases not provided in the ERI_TP are
derived from two Sequence Diagrams that describe the
same objects interaction from two different points of
view. These Test Cases do not increase the requirements
coverage of the UIT_TP, but represent a different way to
test the same functionality.

Degree of detail: The ERI_TP test cases are clearly
more thorough and detailed than those of UIT_TP. The
former are provided by an expert designer who uses
his/her experience with and knowledge of the system
components and interactions. The test cases, therefore,
specify in detail the steps necessary to execute the test
cases and provide a complete description of the
environment and expected results.

The Test Cases of the UIT_TP are automatically
derived using the information in the Sequence Diagrams;
they contain only specifications of the operations without
any reference to the environment or necessary
preconditions. The described situation can be resumed in
Table 3 in which: the rows contains the ERI_TP test
cases subdivided into groups, the columns the UIT
UCTS. An ”X” in the cell signifies equivalence of the test
cases based on the two methodologies.

Use Case Test Suite 1
Sequence Diagram ”BRE-Step1: Call User to External Network:

Originating Case/ Terminating Case”
Test Case 1
Description:
Precondition:
Flow of Event:
 SETUP(A,B)
 DetermineEnterprise(A)
 HRA()
Categories:
 Settings Categories:
 A
 B
 MasterRoutes.def
 Enterprises.def
 Network Topology
 Interactions Categories:
 SETUP(..,..,..)

 DetermineEnterprise(..)
 HRA()
Post Condition:
Comment:

Test Case 2
Description:
Precondition:
Flow of Event:
 SETUP(A, B, Enterprise)
 LRQ(A, B, Enterprise)
 GRA(B, Enterprise)
Categories:
 Settings Categories:
 A
 B
 Enterprise
 MasterRoutes.def
 Enterprises.def
 Network Topology
 Interactions Categories:
 SETUP(..,..,..)
 LRQ(.., .., ...)
 GRA(.., …)
Post Condition:
Comment:

Figure 3 Use Case Test Suite Description

6.2 Comparison Relative to the Test Plans
Development

Time evaluation: Considering an 8-hour working day,
in ERI_TP, the Project Manager and the designers
involved in the project have completed the plan
description in 5 working days divided in three separate
parts:
• Test Case definition (8 hours): the designer analyses

the system components in order to identify the possible
test cases and constructs a testing schema for each
interaction that should be tested.

• Procedures definition (16 hours): the designer specifies
all the steps and actions necessary in order to check the
system's interactions, particularly the description of the
environment and definition of parameters.

• Refinement and completion of documentation (16
hours): the designer and project manager review the
ERI_TP and correct any errors or inaccuracies.
The main advantage of the UIT_TP-based approach is

that it is not necessary to spend time on formulating Test
Cases; these are in fact derived automatically from UML
design descriptions using the Cow_Suite tool. By simply
executing the tool with the UML diagrams as input, the
first part of the ERI_TP development cycle is completed
immediately. Completion of the UIT_TP, and therefore
derivation of the Test Procedures, requires specification
of the values of choices and constraints. We asked an ERI
designer to work interactively with the Cow_Suite tool to
insert the required information. Specifically for UIT_TP
we have:

• Test Cases definition (0 hours): these are derived
automatically from UML design descriptions using the
Cow_Suite tool, by simply executing the tool with the
UML diagrams as input.

• Test Procedures derivation (2 hours): the designer who
works interactively with the Cow_Suite tool inserts
specification of the values of choices.

• Refinement and completion of documentation (8
hours): the designer and Project Manager check the
correctness of the derived Test Procedures and choose
those to be actually run.

Table 2 Requirement Coverage Matrix of ERI_TP and UIT_TP

Table 3 Comparison matrix for Test Coverage: the UCTS7 and UCTS8 Test Cases are an Alternative

to the UIT derived Test Cases while Test Cases TG1-TC6 and TG5-TC2/3 are not Provided
for in UIT_TP

Summarizing, derivation of the executable Test

Procedure involves only 10 hours' time with the UIT
methodology, while 40 hours are needed for complete
derivation of the ERI_TP. Although the UIT_TP-derived
Test Procedures can be passed on directly to the tester for
the execution, they still lack the specifications regarding
environments and pre and post-conditions. Such data
must be included and an additional day's work must be
accounted for. Therefore, the UIT_TP requires in total 18
hours.

Development Stages: the UIT_TP can be defined as
soon as one or more Sequence Diagrams have been
produced, i.e., during the analysis or design stage. Any

user, even with no particular system experience, can
automatically derive the Test Cases by simply applying
the UIT method with the help of the Cow_Suite tool.
These Test Cases are not the final result of the UIT
method application; they can be employed by the Project
Manager for test scheduling and costs estimation in an
early stage of project development. The derived test plan
can be, in fact, used by the Project Manager for making
decisions regarding the type of testing strategy to adopt
(fulfilment of requirements, code coverage, testing the
more peculiar functionalities) or selecting the test cases
and making an initial estimation about the number of
them to be implemented. The subsequent specification of

U C T S 1 U C T S 2 U C T S 3 U C T S 4 U C T S 5 U C T S 6 U C T S 7 U T C S 8

T C 1 X X
T C 2 X X
T C 3 X X
T C 4 X X
T C 5 X
T C 6
T C 1 X X
T C 2 X

T G 3 T C 3 X
T C 1 X
T C 2 X
T C 3 X
T C 1 X
T C 2
T C 3

U I T _ T P - U s e C a s e T e s t
S u i t e s E R I _ T P - T e s t G r o u p

 a n d T e s t C a s e s
T G 1

T G 2

T G 4

T G 5

TG1 TG2 TG3 TG4 TG5 UCTS1 UCTS2 UCTS3 UCTS4 UCTS5 UCTS6 UCTS7 UTCS8

RS_BRE1 X
RS_BRE2 X X X X X X X
RS_BRE3 X X X X X X
RS_BRE4 X X X X
RS_BRE5 X X X
RS_BRE6 X X X

RS_BRE7 X X
RS_BRE8 X X X X
RS_BRE9 X X X

RS_BRE10 X X X
RS_BRE11 X X
RS_BRE12 X X

Test Procedures in the UIT_TP requires, instead, the
designer specific knowledge of the system. Therefore, the
Test Procedures can be derived only specifying the values
for the Settings and Interactions Categories. The ERI_TP
is described by two specific ERI staff members: an expert
designer, who is responsible for test-case derivation, and
a Project Manager, who acts as supervisor and ultimate
decision-maker with regard to acceptance of a test plan.
Thus, the ERI_TP can only be drawn up at the end of the
design phase, just before the testing phase, because a
final, detailed description of all system components is
required. In this way, only when the testing plan is
completed, the Project Manager can verify the degree of
requirements coverage attained or the significance of the
test cases derived and above all decide whether the test
strategy adopted is suitable, or not.

Degree of detail of final Test Procedures: the
ERI_TP requires the tester to decide which the
appropriate values are for each test procedure in order to
attain requirements coverage, and therefore how many
tests to run. The Test Procedures in UIT_TP are, instead,
more refined because the tester can examine all the
combinations obtained by the insertion of choices values
and directly choose those to execute. Moreover,
considering the Project Manager point of view, the
number of Test Procedures (derivable from each Test
Case) represents “exhaustive” coverage of the input
domain with the respect to the inserted values. He/She
can therefore quantify the dimensions of the test domain
for each specific system interaction before the testing
phase, and evaluate the number of tests run for each Test
Case with respect to “exhaustive” coverage, after test
execution.

7. Related Work

With the widespread acceptance of the UML standard
for describing object-oriented designs, UML-based
testing has become a growing field of research. In
particular, some researchers have focused their efforts on
finding methods and tools for guiding the stages of
testing by using UML descriptions. In this section we
provide a brief overview of the literature, presenting the
main solutions derived both from the academic
environment. In particular we differentiate them into two
groups: those which require for test cases derivation
translation of the UML diagrams into an intermediate
formal description and those which requires annotation of
the UML diagram with further (formal) information.

Considering the former group the tool UMLAUT, [6]
can be used to manipulate the UML representation of a
system and automatically transform it into an
intermediate form suitable for validation. Similarly in
[10] the authors present a formal approach to derive test
cases from UML Statecharts. Other relevant proposals

include: [16] which describes an approach to black-box
test-generation in which an AI (artificial intelligence)
planner is used to generate test cases from UML Class
Diagrams; [4] which proposes a probabilistic method,
called statistical functional testing, for the generation of
test cases from UML state diagrams, using transition
coverage as testing criterion; [8] which describes a
powerful methodology for scenario-based speci?cation of
reactive systems.

Considering the latter group the relevant proposals
include: JUnit [9], which provides a simple framework
for software unit testing [16]; the TOTEM approach [3]
which supports the derivation of functional system test
requirements, which are then used to then to derive test
cases, test oracles and test drivers by using the sequence
or collaboration diagrams associated to each use case;
SCENTOR [17] which supports the generation of
scenario-based testing using JUnit as a basis; AGEDIS
which is a project focused on the automation of software
testing, improving software quality, and reducing of the
expense of the testing phase; [12] which presents a
method and a tool for automated synthesis of test cases
from generic test scenarios and a design model of the
application. SeDiTeC [5] which supports specification of
several test case data sets for each sequence diagram and
automatically generates test stub for the classes and
methods whose behaviour is specified in the sequence
diagrams.

UML-based integration testing is clearly a field under
continuous development and refinement. In this respect,
all the aforementioned studies appear interesting and
must be viewed as complementary to our approach. In
fact, what we develop through the procedures described
herein are test cases from SDs scenarios. In particular, we
do not aim at formalization: our guiding criteria are rather
systematicity and timeliness. Finally, our method, like the
[10] approach, can be exploited in the early stages of
software development to automatically generate tests
from the software design.

8. Conclusions and Future Work

In the last years the research interest of the testing
community has focused more and more on the use of
UML for testing purposes. Several methods have been
proposed for deriving test suites using UML diagrams as
a reference. However, little effort has been spent so far to
investigate the application of the methods to real-world
industrial case studies or to carry on empirical
evaluations about their effectiveness or about the effort
required for their adoption. The purpose of this paper is
precisely to investigate such issues, which are in our
opinion of utmost importance. In fact, UML-based testing
is an attractive notion, but its usefulness has yet to be
demonstrated in practice. We presented UIT, an original

UML-based method for test case derivation, and
employed it to build a detailed test plan, the UIT_TP,
within one of the crucial phases of the ERI system
process, the Pre-Integration Test. We then presented
several evaluations originating from the comparison
between UIT_TP and the “official” ERI test plan, the
ERI_TP, built by the ERI personnel following the
standard in-house procedures. ERI has been in fact
certified at CMM level 3 [13], therefore the test strategies
that we compared to UIT are effective and well
established.

The comparison brought us to some interesting
conclusions about the efficacy of the UIT method. The
main advantage of UIT application was felt to be the fact
that the Program Manager can exploit the provided
UIT_TP as a baseline to adopt the most appropriate test
selection strategy. UIT provides, in fact, the Project
Manager with a detailed test plan already during the
analysis or design phase, i.e., early in advance with
respect to the testing stage. Therefore, the Project
Manager can get a realistic evaluation of the requirement
and functional coverage that can be reached. If the values
predicted are not satisfactory, corrective actions can be
taken or a different choice of the proper test strategy for
the testing phases can be considered. Moreover, the
automated derivation of UIT_TP lets to considerably
reduce the time necessary for test plan completion. In the
proposed case study, we estimated a reduction of the time
needed for the UIT_TP derivation of four times, while
obtaining the same level of requirement coverage of the
ERI_TP. On the negative side, we observed that the
automatic derivation of test cases failed to include the
exceptional test cases, i.e., test cases to handle abnormal
system behaviour. It would be opportune, therefore, that
before deployment, the UIT_TP is checked by an expert
and additional test cases are possibly included to cover
these special situations. This need is indeed common to
any other automatic test case derivation method.

In conclusion, UIT and the associated Cow_Suite tool
have been quite favourably received within the ERI
Company. Here we presented the application of UIT only
to the Pre-Integration testing phase of the BRE test plan,
but similar experiments could be replicated for the other
testing phases. In the next future, ERI intends in fact to
apply the methodology in other test steps. On the IEI-
CNR side, we are still continuing to refine UIT, as well as
the Cow_Suite tool, to better reply to the exigencies and
constraints coming from the industrial users.

References
[1] AGEDIS. Available at http://www.agedis.de/index.shtml

[2] F. Basanieri, A. Bertolino, E. Marchetti, “The Cow_Suite
Approach to Planning and Deriving Test Suites in UML
Projects”, Proc. Fifth International Conference on the
Unified Modeling Language - the Language and its
applications UML 2002, LNCS 2460, Dresden, Germany,
September 30 - October 4, 2002, p. 383-397

[3] L.C, Briand, Y. Labiche, “A UML-Based Approach to
System Testing”. Journal of Software and Systems
Modeling (SoSyM) Vol. 1 No.1 2002 pp. 10-42.

[4] P., Chevalley, P. Thévenod-Fosse, “Automated generation
of statistical test cases from UML state diagrams” 25th
Annual International Computer Software & Applications
Conference (COMPSAC'01), Chicago (USA), 8-12 October
2001, pp.205-214

[5] F., Fraikin, T. Leonhardt, “SeDiTeC - Testing Based on
Sequence Diagrams” In Proceedings of the 17th IEEE
International Conference on Automated Software
Engineering, Edingburgh, September 2002

[6] J.M, Jézéquel, A., F. Le Guennec, Pennanech, “Validating
Distributed Software Modeled with UML” Proc. UML98,
in LNCS 1618, 365-376.

[7] H.323 Standard
http://www.microsoft.com/windows/NetMeeting/Corp/resk
it/Chapter11/default.asp

[8] D., Harel, R. Marelly, "Specifying and Executing
Behavioral Requirements: The Play In/Play-Out
Approach", Software and System Modeling (SoSyM), 2003

[9] Object Mentor, Inc., JUnit, Testing Resources for Extreme
Programming, http://www.junit.org (Feb. 2001)

[10] J., Offutt, A. Abdurazik, “Using UML Collaboration
Diagrams for Static Checking and Test Generat”. UML
2000, University of York, UK, 2-6 October 2000

[11] T.J., Ostrand, M.J. Balcer, “The Category Partition Method
For Specifying and Generating Functional Tests”.
Communication of the ACM, 31(6), June 1988, 676-686.

[12] S., Pickin, C., Jard, Y., Le Traon, T., Jéron, J.M., Jézéquel
A., Le Guennec, “ System test synthesis from UML models
of distributed software” In D. Peled and M. Vardi, editors,
Formal Techniques for Networked and Distributed Systems
- FORTE 2002, LNCS, Houston, Texas, November 2002

[13] M. Paul, CMM v2.0 Draft C, 22 Oct. 1997
[14] Rational Unified Process version 2000.02.10. Rational

Software Corporation. On-line at
http://www.rational.com/products/rup

[15] UML Documentation version 1.5 Web Site. On-line at
http://www.omg.org/technology/documents/formal/uml.ht
m

[16] A., Von Mayrhauser, R.; France, M.; Scheetz, E. Dahlman,
“Generating test-cases from an object-oriented model with
an artificial-intelligence planning system”, IEEE
Transactions on Reliability, Vol. 49, Issue 1, 2000, Pp 26-
36

[17] J. Wittevrongel, F. Maurer, “Using UML to Partially
Automate Generation of Scenario-Based Test Drivers”.
OOIS 2001, Springer, 2001

