
Systematic Generation of XML Instances to Test
Complex Software Applications�

Antonia Bertolino, Jinghua Gao, Eda Marchetti, and Andrea Polini

Istituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”
Consiglio Nazionale delle Ricerche
Via Moruzzi, 1 – 56124 Pisa, Italy

{antonia.bertolino, jinghua.gao, eda.marchetti,
andrea.polini}@isti.cnr.it

Abstract. We introduce the XPT approach for the automated system-
atic generation of XML instances which conform to a given XML Schema,
and its implementation into the proof-of-concept tool TAXI. XPT can be
used to automatize the black-box testing of any general application that
expects in input the XML instances. We generate a comprehensive set of
instances by sampling all the possible combinations of elements within
the schema, applying and adapting the well known Category-Partition
strategy for functional testing. Originally, XPT has been conceived for
application to the e-Learning domain, within which we briefly discuss
some examples.

1 Introduction

Increasingly today complex software systems are developed according to a mod-
ular architecture, within which precise features can be identified and separately
implemented. Main objective of this “componentization” trend is to permit the
development of the different features of a complex composite application by di-
verse stakeholders while maintaining the possibility of integrating the subsystems
into a unique working system. Nevertheless the integration clearly presupposes
the definition of a rigorous and checkable format of the data exchanged between
the components.

One of the most important innovations that strongly contributes to solve this
issue has been the introduction of the eXtensible Markup Language (XML) [1].
In few years this language has established itself as the de facto standard format
for specifying and exchanging data and documents between almost any software
application. Immediately following, the XML Schema [2] has then spread up as
the notation for formally describing what constitutes an agreed valid XML docu-
ment within an application domain. Thus, XML Schemas are used for expressing
the basic structure of data and parameters that remote components exchange
with each other, and restrictions over them, while XML instances, formatted
� This work has been supported by the European Project TELCERT (FP6 STREP

507128).

N. Guelfi and D. Buchs (Eds.): RISE 2006, LNCS 4401, pp. 114–129, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Systematic Generation of XML Instances 115

according to the rules of the referred XML Schema, represent the allowed nam-
ing and structure of data for components interaction and for service requests.

The introduction of XML for specifying standard format of exchanged data is
certainly fundamental and strongly increases the possibility of correct interactions,
nevertheless XML related technologies do not solve the interoperability problem
per se. No information concerning the interpretation of data can be associated to
an XML description, leaving the room for different interpretations by the various
developers. Trying to make a further step toward guaranteeing interoperability,
our proposal here is to combine the great potential of XML Schema in describing
input data in open and standard form, with testing activity to assess the common
understanding of interacting e-Learning systems. In doing this, our intention is to
take advantage of the special characteristic of the data representation suitable for
automated processing, which is clearly a big advantage for testing.

We find that the adoption of the XML Schema leads quite naturally to the ap-
plication of partition testing, a widely studied subject within the testing commu-
nity, since it provides an accurate representation of the input domain into a for-
mat suitable for automated processing. The subdivision of the input domain into
subdomains, according to the basic principle of partition testing, can be done au-
tomatically by analyzing the XML Schema elements: from the diverse subdomains
identified, the application of partition testing amounts to the systematic deriva-
tion of a set of XML instances. Systematic generation of XML instances, differ-
ently from a random based approach, clearly has important consequences on the
effectiveness of the generated test suite permitting to derive meaningful statistics
on the kind of instances generated, and then on the covered features.

This paper introduces our proposed XML-based Partition Testing (XPT) ap-
proach for the systematic generation of XML instances. Also a short overview
on a proof-of-concept tool, called TAXI (Testing by Automatically generated
XML Instances), is provided. Such tool inputs an XML Schema and automati-
cally generates a set of XML instances for the black box testing of a component,
whose expected input conforms to the taken schema. At the same time the paper
reports a preliminary qualitative evaluation of the approach to the generation
of instances for the IMS Learning Information Package specification.

In the remainder of this paper we discuss some related work in Section 2,
and summarise the well known Category Partition method in Section 3; then
we provide a description of the proposed strategy in Section 4 and of the tool
implementing it in Section 5. Section 6 finally reports some preliminary con-
siderations on application of the methodology; in particular in 6.1 we provide
quantitative motivations to the application of a systematic approach, then in 6.2
a simple qualitative comparison of TAXI with another existing tool (XMLSpy)
is presented. Some conclusions are finally drawn in Section 7.

2 Related Work

Our research is aimed at automatically generating a comprehensive suite of XML
instances from a given XML Schema. The generated XML instances can then be

116 A. Bertolino et al.

used for the black-box testing of applications that expect such XML instances
as input.

Notwithstanding the intense production of XML-based methods and tools in
the latest years, to the best of our knowledge there do not exist other XML-based
test approaches comparable to ours. Indeed, the existing “test tools” based on
XML can be roughly classified under three headlines:

– testing the XML instances themselves;
– testing the XML Schemas themselves;
– testing the XML instances against the XML Schema.

Regarding the first group, a basic test on an XML file instance is well-formedness,
which aims at verifying that the XML file structure and its elements possess
specified characteristics, without which the tested file cannot be even classified
as an XML file. Diverse sets of test suites (for instance [3], [4]) and various tools
aiming at validating the adequacy of a document instance to a set of established
rules, such as [5], have been implemented.

With regard to the testing of XML Schemas themselves (second group), sev-
eral validators exist for checking the syntax and the structure of the W3C XML
Schema document (for instance, [6], [7], [8] [9], and [10]).

The third group encloses tools for automatic instance generation based on
XML schema, which is what we also do. Relevant tools of this group are [11],
[12] and [13]. However for all of them the XML instances generation only im-
plements random or ad hoc generation; the instances are not conceived so to
cover interesting combinations of the schema. Indeed this characteristic is where
our approach tries to provide a comprehensive solution. Adopting a systematic
criterion in generating instances will have a double positive side effect: the gen-
eration of more accurate and mindful XML instances and the automatization of
black box test suite specification.

So far no proposal has really succeeded in pushing the widespread adoption of
automated black box testing as it would deserve. The well known Category Par-
tition method [14] provides a procedural approach to analyse the input domain
and to systematically derive a comprehensive test suite (see a brief description
in the next section). It has been previously applied by many authors to require-
ments specifications expressed in various notations (for instance also by authors
of this paper to UML specifications [15]). We propose here to apply it to XML
schema. We think in fact that the widespread acceptance of XML, and its prag-
matic flavor, associated to the Category Partition methodology could finally be
the winning instrument to achieve fully automated black-box testing.

3 Category Partition

Introduced in the late 80’s and today widely known and used, the Category
Partition (CP) [14] provides a systematic and semi-automated method for test
data derivation, starting from analysis of specifications until production of the
test scripts, through the following series of steps:

Systematic Generation of XML Instances 117

1. Analyze the specifications and identify the functional units (for instance,
according to design decomposition).

2. For each unit identify the categories : these are the environment conditions
and the parameters that are relevant for testing purposes.

3. Partition the categories into choices :1 these represent significant values for
each category from the tester’s viewpoint.

4. Determine constraints among choices (either properties or special condi-
tions), to prevent the construction of redundant, not meaningful or even
contradictory combinations of choices.

5. Derive the test specification: this contains all the necessary information for
instantiating the test cases by unfolding the constraints.

6. Derive and evaluate the test frames by taking every allowable combination
of categories, choices and constraints.

7. Generate the test scripts, i.e. the sequences of executable test cases.

The XML Schema provides an accurate representation of the input domain
which leads quite naturally to the application of the Category Partition. In par-
ticular the subdivision of the input domain into functional units and the identi-
fication of categories can be done by exploiting the formalized representation of
the XML Schema.

4 Automatic Instances Generation

In this section we briefly describe our original XML instances generation ap-
proach, which is called XML-based Partition Testing (XPT) [16]. A proof-of-
concept tool called TAXI (Testing by Automatically generated XML Instances)
implementing the proposed methodology is also described.

The XPT methodology is composed by two components: XML Schema Anal-
ysis (XSA), and Test Strategy Selection (TSS). The former, detailed in Section
4.1, implements a methodology for analyzing the constructs of the XML Schema
and automatically generating the instances. The latter, described in Section 4.2,
implements diverse test strategies useful both for selecting those parts of the
XML Schema to be tested and for opportunely distributing the instances with
respect to the Schema elements. These two phases work in agreement, as shown
in Figure 1, to realize the application of the Category Partition method.

4.1 XML Schema Analyzer

In this section we introduce the functions realized by the XSA Component as
schematized in Figure 1. Specifically XSA takes as an input the weighted ver-
sion of the original XML Schema that is provided at the end of the first ac-
tivity (details in Section 4.2) and foresees a Preprocessor activity in which the
XML Schema constructs, like all, simpleType, complexType and so on, and the
1 Note the usage of the same term “choice” both in XML schema syntax (written as

<choice>) and in the CP method (written as choice), which is purely accidental.

118 A. Bertolino et al.

Weigth Assignment

Preprocessing

Choice Analysis

Strategy Selection

Occurrences
Analysis

Intermediate
Instance Derivation

Final Instance
Derivation

XML Schema Analyzer (XSA)

XPT Activity Diagram

Test Strategy Selector (TSS)

Fig. 1. XPT main activities

shared elements, like group, attributeGroup, ref, and type, are analyzed and
manipulated. The choice elements are excluded from the Preprocessor activity
because they will be analyzed by the TSS component.

Considering, for instance, the all elements, one of the possible sequences of
their children elements is randomly chosen 2 and used for generating instances;
for each group element, instead, its body is copied wherever it is referenced.
These preprocessing operations of course do not contribute to the definition of
the test instances, but simplify their successive automatic derivation.

As detailed in Section 4.2 the next two activities by the TSS component
have the purpose of: extracting the Functional Units (i.e. a list of subschemas)
from the original XML Schema, by means of the analysis of choice elements,
and selecting the test strategy that must be implemented (i.e. either covering a
certain percentage of subschema functionalities or distributing a fixed number
of instances among all the extracted subschemas, or a combination).

2 A random selection algorithm which provides the elements ordering has been imple-
mented for this purpose.

Systematic Generation of XML Instances 119

The implementation of the Category Partition methodology proceeds with the
Occurrences Analysis activity, which analyzes the occurrences declared for each
element in the subschema and, applying a boundary conditions strategy, derives
the border values (minOccurrences and maxOccurrences) to be considered for
the final instances generation.

The results of this activity are combined together during the last steps of the
XPT methodology by deriving a set of intermediate instances structures. Values
are given to the elements listed into each intermediate instance structure. For
this purpose in the current version of TAXI a set of specific algorithms have been
implemented to provide the required number of random values for each specific
element type. In the current implementation, predefined values available in the
Schema and various constraints (for instance facets), have been considered.
Finally, according to the selected test strategy, the Final instance derivation
activity produces the final set of instances, which corresponds to the test suite.

4.2 Test Strategy Selection

Testing is an essential, but expensive part of development. Hence test cases need
to be prioritized, although generally it is not easy to decide on which parts of
the application the testing effort should be concentrated and the amount of test
cases to dedicate to each of them. The XML Schema representation of the input
domain can help in this regard, by making it possible to implement a practical
and automatic strategy for planning a suitable set of test instances.

The component of the XPT methodology which is in charge of this task is the
Test Strategy Selection. It completes the implementation of the Category Par-
tition by allowing for the selection of three specific test strategies. Referring to
Figure 1 these include: Weights Assignments, which assigns weights to the chil-
dren of the choice elements; Choice Analysis, which derives a set of subschemas
the original XML Schema by means the analysis of the choice elements and
first level elements; and Strategy Selection, which selects the test strategy to be
implemented. We describe them in detail in the following.

Weights Assignments. The idea underneath the Weights Assignments activ-
ity is that the first level element or the children of the same choice may have
not the same importance for instances derivation. There could be options rarely
used or others having critical impact into the final instance derivation. Specifi-
cally considering with choice elements, according to their definition, only one
child per time can appear into the set of final instances, hence from the user
point of view the possibility of selecting those more important could be very at-
tractive. He/she can pilot the automatic instance derivation forcing it to derive
more instances including the most critical choice options.

The XML Schema does not provide the possibility of explicitly declaring the
criticality of the diverse options, but often this information is implicitly left to
the judgement and expertise of the human agent. The basic idea is that the
XML Schema users are asked to make explicit this knowledge. In particular
XPT explicitly requires to annotate each child of a choice element with a value,

120 A. Bertolino et al.

belonging to the [0,1] interval, representing its relative “importance” with re-
spect to the other children of the same choice. This value, called the weight,
must be assigned in such a manner that the sum of the weights associated to
all the children of the same choice element is equal to 1. A node more critical
has greater weight. Several criteria for assigning the importance factors could be
adopted. Obviously this aspect in the proposed approach remains highly subjec-
tive, but here we are not going to provide a quick recipe on how numbers should
be assigned. We only suggest expressing in quantitative terms the intuitions
and information about the peculiarity and importance of the different options,
considering that such weights will correspondingly affect the testing stage.

Once the weights have been assigned, XPT uses them to derive, for each
option in the diverse choice elements, the relative importance factor, called the
final weight, in terms of how risky is that child and how much effort should be
put into the derivation of instances containing it. In a simplified version the final
weight of every child is then computed as the product of the weights of all nodes
on the complete path from the root to this node. Note that the sum of the final
weights of the leaves is still equal to one.

Choice Analysis. As shown in Figure 1, after the Preprocessor activity the
XPT methodology foresees the analysis of choice elements for deriving a set of
subschema. These allow only one of the elements contained in their declaration
to be present within a conforming instance. This means that for any alternative
within a choice construct, a separate sub-XML Schema containing it can be
derived. Stretching somehow the original meaning of a functional unit, each
possible sub-schema is put in correspondence with the notion of a Category
Partition functional unit. In other terms, in XPT functional units are meant as
”domain units” and are thus assimilated to subsets of XML Schema elements
that can originate correct testing instances by managing separate set of data
inputs.

Obviously now the problem is the possible occurrence of several choices
within one schema, which gives rise to several possible combinations. In this
case during the Choice Analysis activity as many subschemas as the number
of the possible combinations of the children of the choice nodes are produced.
In Figure 2 we report an example (for simplicity we omit from thew figure the
assigned weights). In this case element a is a choice element, which includes a
simple element b and another choice element c which has two children: x and y.
In particular a transform to three sequence elements, one from element b, and
two from the children element of c. In this way the original schema is divided
into three subschemas.

During this operation the final weights previously derived are not modified:
they will be used once derived the set of possible substructures. Using the fi-
nal weights of the leaves in each substructure, it is possible to derive a unique
value, called the subtree weight, useful for test strategy selection, as described in
the next subsection. Specifically considering each substructure, starting from its
root, the set of the partial subtree weights is normalized so that the sum of the
subtree weights over the entire set of substructure is equal to 1.

Systematic Generation of XML Instances 121

Fig. 2. Diverse subschema derived by the tag <choice>

Strategy Selection. Following the steps described so far each set of substruc-
tures has been defined, and a specific subtree weight has been assigned to each
of them 3. Now it is necessary to determine the test strategy to be adopted
for test cases derivation. For this we consider three different situations: either
a certain number of instances to be derived is fixed, or the percentage of func-
tional coverage is chosen, or both are selected as a stopping rule. The first is
the case in which a fixed number of instances must be derived from a specific
XML Schema. In this case XPT derives the most suitable distribution of the
derivable final instances among the subschemas previously defined. The second
situation considers the occurrences with a certain percentage of subschemas, in
other words the functionalities must covers a certain percentage of testing pur-
poses. In this case XPT selects those subschemas that will be more suitable for
testing purposes. Finally the last case is a mixed test strategy: it proposes a
certain number of instances over a fixed percentage of functional coverage.

From a practical point of view, let us discuss the implications of each strategy:

– Applying XPT with a fixed number of instances: XPT strategy can
be used to develop a fixed number NI of final instances out of the many that
could be conceived starting from the original XML Schema. This could be in
practice the case in which a finite set of test cases must be developed. Using
the subtree weights associated to each substructure, the number of instances
that will be automatically derived for each of them is calculated as NI times
the subtree weight.

– Applying XPT with a fixed functional coverage: this corresponds to
the case that a certain percentage of functional test coverage (e.g. 80%) is
established as an exit criterion for testing. In this case considering the fixed
coverage C, the selection of the substructures to be used can be derived by

3 Of course if the original XML Schema did not include any choice element, at this
point only one structure is available having 1 as subtree weights.

122 A. Bertolino et al.

ordering in a decreasing manner the subtree weights, multiplying them times
100 and adding them together, starting from the heaviest ones, until a values
greater than or equal to C is reached.

– Applying XPT with a fixed functional coverage and number of
instances: in this case the above two strategies are combined. XPT first
selects the proper substructures useful for reaching a certain percentage of
functional coverage (as described above). Then considers the subtree weights
of these selected subschemas and normalizes them so that their sum is still
equal to 1. The new derived subtree weights are finally used for distribut-
ing among the selected substructures the fixed number of instances to be
automatically derived.

5 The TAXI Tool

In this section we briefly describe the architecture of the TAXI tool, which im-
plements the XPT strategy. The current version of TAXI can manage almost
all elements of the XML Schema elements providing the set of required XML
instances, even if some improvements are currently under implementation, such
as the possibility of supporting namespaces or the usage of ontology for values
assignment. TAXI will be released as open source code as soon as the develop-
ment of the new added functionalities will terminate. Nevertheless in its current
version it has been used as a proof-of-concept tool for verifying the efficiency
and the applicability of the XPT methodology, providing encouraging results.
TAXI takes an XML schema as input and parses it by using the W3C Document
Object Model(DOM) [17]. It is mainly divided into five components (see Figure
3): User Interface, TSS, Preprocessor, SIP (Skeleton of Instances Producer), FIP
(Final Instance Producer), and VP (Values Provider).

Specifically the User Interface manages the interaction with the user, who can
influence and control the instance generation process accordingly with his/her
specific requirements. By means of this components TAXI acquires the input
to start the generation of the test case set. One of the tasks required to the
user is therefore the selection of the XML Schema from which he/she wants to
derive the valid instances and from this point ahead the generation proceeds
automatically. User also needs to set the weights of the schema elements, and to
select the test strategy. The weights as described in the previous section are used
to represent the amount of test cases from different subtrees. Using weight and
test strategy together TAXI can generate the proper amount of test cases from
each subtree. The XML Schema is then passed to the Preprocessor component,
which implements the preprocessor activities described in the previous subsec-
tion. The scope of this component is solving the tags group, attributeGroup,
ref, type, restriction, extension and all. After this preprocessing stage,
the input file is not a well-formed schema anymore, because the elements in
the schema are not unique. In this so called “schema” there remain sequence,

Systematic Generation of XML Instances 123

FIP

VP

File System

SIP

XML
Schema 1

XML
Schema 2

XML
Schema

XML file
Instance
based on

.xsd 1

XML file
Instance
based on

.xsd 1

XML file
Instance
based on

.xsd 1

XML file
Instance
based on

.xsd 1

XML file
Instance
based on

.xsd 1

XML file
Instance
based on

.xsd 1

XML file
Instance
based on

.xsd 1

XML file
Instance
based on

.xsd 2

XML file
Instance
based on

.xsd 1

XML file
Instance
based on

.xsd 1

XML file
Instance
based on

.xsd 1

XML file
Instance
based on

.xsd n

File System

Control Console - User Interface

Stored
Data Sets

Category Partition Interface

Intermediate instances

preprocessor

TSS

Weighted
XML

Schema

XML
Schema n

Fig. 3. Architecture of the tool TAXI

choice and simpleType elements. Then TAXI passes this “schema” to Test
Strategy Selector. As seen, the first step of this component is choice solver,
which produces multiple sub-schemas depending on the number of the choice
constructs. At this point the component SIP (Skeleton of Instances Producer)
retrieves and analyses each sub-schema, extracting from each element only the
necessary information useful for the construction of the final instances. Mean-
while the weight of the child elements will be passed by the interface, and be
attached to the sub-schema. Combining the weights with the test strategy, the
total test cases can be calculated by TAXI automatically. In particular, when
the condition minOccurrences < maxOccurrences holds, collaborating with the
component VP (Values Provider), it establishes the exact number of occurrences
of each element. By using the collected data, the SIP component develops a set of
skeleton files. These are mainly modified tree representations of the various sub-
schemas in which special tags and instructions are introduced to make the final
instances derivation easier. Specifically the number of skeletons to be produced
results from the all possible combinations of the established occurrence values
assigned to each element. Reflecting the activities described in the previous sec-
tion the skeletons of instances so produced are finally analyzed by the FIP (Final
Instance Producer) component. It uses the instructions provided by the SIP com-
ponent in the skeleton, and collaborates with the VP component for receiving
the correct values to be associated to each element. The final result is a set
of instances, which are by construction conforming to the original schema and
classified by sub-schemas. The VP (Values Provider) component has the task
of providing the established occurrence of each element and the values to be
assigned to each elements during the final instances derivation.

124 A. Bertolino et al.

6 Considerations on Applicability of the Approach

The IMS Content Packaging Specification provides the functionality to describe
and package learning materials, such as an individual course or a collection of
courses, into interoperable, distributable packages. Content Packaging addresses
the description, structure, and location of online learning materials and the def-
inition of some particular content types.

As stated above the TAXI tool is still undergoing implementation, however
in this section we provide a sample of its functionality, discussing its application
within the e-Learning domain. In this domain, our purpose is to reduce the
probability of having incorrect interactions among cooperating e-Learning tools:
if the test cases are selected appropriately, the tools that pass all of them should
be able to interoperate with the other tools that have been submitted to the
same test campaign. Of course, in many cases the generation of all the possible
instances could not be feasible given that the number could not be finite (consider
for instance when an element has an unbounded maxOccurences attribute).

Learner Information Package is a IMS standard collection of information
about a Learner (individual or group learners) or a Producer of learning content
(creators, providers or vendors). As described in the IMS web site4 the IMS
Learner Information Package (IMS LIP) specification [18] addresses:

“. . . the interoperability of internet-based Learner Information systems
with other systems that support an Internet based learning environ-
ment. The intent of the specification is to define a set of packages that
can be used to import data into and extract data from an IMS compliant
Learner Information server, i.e. servers that in a eLearning environment
collects data concerning pupils and/or eLearning content providers. A
Learner Information server may exchange data with Learner Delivery
systems or with other Learner Information servers. It is the responsibil-
ity of the Learner Information server to allow the owner of the learner
information to define what part of the learner information can be shared
with other systems. The core structures of the IMS LIP are based upon:
accessibilities; activities; affiliations; competencies; goals; identifications;
interests; qualifications, certifications and licences; relationship; security
keys; and transcripts”.

It is not difficult to understand the importance of conformance testing when
such kind of open specifications are considered. The prefigured scenario is that
different stakeholders will independently develop complex software systems that
should all be able to take as input or generate in output conforming documents.
The tacit assumption is that having considered an agreed specification they
would be able to interoperate. Clearly this is far from being completely true.
Even a simple XML based specification gives raise to infinite different XML
instances. In particular it is possible to specify the same thing in many different
ways but it is not difficult to find different parsers that will disagree on the
4 http://www.imsglobal.org

Systematic Generation of XML Instances 125

conformance of an XML instance when the original specification imports many
nested name spaces or complex tree structure.

In the next subsection we first analyse the dimensions of the feasible legal
instances, for a given schema.

6.1 Number of Conforming Instances

Two different factors influence the variability of legal instances: instances can
have different values for the same element (Data variability); or, instances can
have different structures, i.e., they could contain different elements or differ-
ent occurrences for the same element (Structural variability). For the case of
structural variability three main reasons can be identified:

– the order of the elements in the instances (for instance the tag <all> leads
to such kind of variability)

– the presence or otherwise of elements and/or attributes in the instances (for
instance the tags <choice> or <use> lead to this situation)

– the number of possible occurrences of an element in the instances (due to
the presence of attributes minOccurrences and maxOccurences)

Starting from these considerations and only focusing on structural variability,
the number of correct instances foreseen by a certain XML Schema (represented
as a tree structure), can be derived using the following formulas:

ChoiceNode = 2�{OptionalAttributes}
n∑

i=1

Subtreei (1)

AllNode = 2�{OptionalAttributes}n!
n∏

i=1

Subtreei (2)

SequenceNode =
n∏

i=1

Subtreei (3)

minMaxOccurNode = 2�{OptionalAttributes}
maxOccur∑

i=minOccur

(
n∏

j=1

Subtreej)i (4)

LeafNode = 2�{OptionalAttributes}(maxOccur − minOccur) (5)

In the formulas above, the variable n indicates the number of different subtrees
of a given node. The name of the left member of a formula indicates when to
apply it. For instance if the node contains a <choice> tag the formula to
apply will be the first. In order to calculate the number of possible instances a
simple visit of the XML Schema tree is sufficient. However in the general case
this number cannot be calculated when there are unbounded occurrences of an
element or loops in the structure of a subtree: for example, a complexType that
in one of the corresponding subtrees contains an element of the same type.

126 A. Bertolino et al.

Just to give a flavor we calculated the number of possible structurally differ-
ent instances that can be generated starting from the LIP XML Schema [18].
According to the formula, under the restrictive assumption that no maxOccur-
rences attribute can assume values greater than three, from the schema [18]
we calculate that there are 78912 valid instances that can be generated from
the main element “product”. To reduce the number of equivalent instances, we
use boundary conditions strategy: when the minOccurences < maxOccurences,
we use only the minimum value and maximum value to do the combination.
With this simplified method, 35200 valid instances are obtained from the given
schema.

Fig. 4. Partial schema tree

This simple result can probably provide the most intuitive reason to suggest
the use of a systematic approach to the generation of XML instances for testing
purpose. Given that only a small part of the instances can be used for testing
purpose it is absolutely necessary to apply a systematic strategy for the deriva-
tion of the test cases. The strategy should permit to focus on conditions that
the tester could judge particularly critical in a specific setting. For instance for
a particular application the tester could judge the variability on the number
of occurrences more important than the order of the elements. Considering the
schema that was presented in Fig 4, there are two choice elements: “choice1”
is the child element of contentype, “choice2” is element “referential”, which is
a child element of “choice1”. We set the weight for “choice1” first. There are
three child elements in this complexType, we set the weight of “referential” as
0.5, the weight of “temporal” and “privacy” are 0.3 and 0.2. Then consider the
weight for another choice element “referential” which has three child elements
as well. We set the weight of “sourceid” as 0.3, “indexid” as 0.2, and the other

Systematic Generation of XML Instances 127

one as 0.5. After solving choice 5 subtrees are derived. TAXI can calculate the
weights for each subtree automatically according to the weights of choice nodes.
The weights of these five sub-schemas are given below.

– The weight of subtree that includes “soureid” is 0.15
– The weight of subtree that includes “indexid” is 0.10
– The weight of subtree that includes “soureid” and “indexid” is 0.25
– The weight of subtree that includes “temporal” is 0.3
– The weight of subtree that includes “privacy” is 0.2

6.2 XPT vs. Random Generation

The possibility of automatically deriving instances from a XML Schema is an
emerging problem in many fields of application. As mentioned in Section 2 some
tools have been implemented to this purpose. However all of them rely on the
random generation of instances, and do not implement any systematic and spe-
cific testing strategies. In this section we want to compare the performance of
such a kind of existing tools with our tool TAXI. Specifically we select XMLSpy
[11], which is an industrial standard XML development environment for model-
ing, editing, debugging, and transforming all XML technologies. For generating
the instances, XMLSpy asks the user to perform some preliminary configuration
settings, including: filling elements and attributes with data, whether generat-
ing the non-mandatory elements and attributes, generating a priori selection of
mandatory choice element or not, and how many elements should be generated
when maxOccurrences is more than one. Thus XMLSpy is different from TAXI
both in the strategy implemented and in the typology of instances obtained. We
list the mains aspects that characterize the two tools in the following.

1. The amount of instances: XMLSpy generates several configurations, but from
each of them only one instance can be derived. TAXI has the capability of
deriving large quantity of instances covering systematically all the aspects
of a specific XML schema.

2. The value of elements: XMLSpy always gives a same fixed value for each data
type. For instance the <date> type is fixed to “1967-08-13”, and <string>
type to “string”. TAXI has the possibility of declaring a specific set of values
for each data type or randomly generating as many values as required.

3. The solution of <all> elements: XMLSpy does not make difference in deriv-
ing instances when there is a <all> or <sequence> element, i.e. in the two
cases the derived instances will have the same structure. TAXI generates all
the possible combinations of the <all> children element, and then randomly
selects one from them.

4. The solution of <choice> elements: In presence of a specific request from
the user, XMLSpy can get instances with the first child element of <choice>
element, otherwise XMLSpy leaves the content of choice element as empty.
TAXI derives diverse instances for each of the <choice>’s children elements,
covering in this manner all the possibilities.

128 A. Bertolino et al.

5. The solution of occurrences: in XMLSpy all the values of occurrences must be
fixed between 1 to 99. TAXI leaves the user both the possibility of declaring
the values of occurrences or using the boundary values. In case of unbounded
occurrences, if the user does not set a preference value, TAXI adopts a
prefixed bound. The occurrences values are then combined to get instances
with variation structures.

Considering a complex schema, TAXI nearly generates all possible combina-
tions of complex elements and occurrences, and each instance has different values
inside, while the instances from XMLSpy vary only in the amount of repeated
elements. Concluding despite the good performance of XMLSpy, for the instance
generation this tool applies a quite simple algorithm, which gives only few flexi-
bility to the user and does not attempt to cover all the input domain. From the
tester’s point of view the derived instance cannot cover all the declared schema
elements and consequently the functionalities of the application to be tested.
Thus it could be claimed that TAXI is able to provide a test strategy, which is
more comprehensive and covers all weaknesses of XMLSpy.

7 Conclusions

We have introduced the XPT approach for the systematic derivation of XML
Instances from a XML Schema. XPT applies to the XML notation a well-known
method for software black-box testing. Given the pervasiveness of XML in web-
based and distributed applications, we are convinced that the proposed method
can be very useful to check the quality of applications via a rigorous test cam-
paign. In generak, we are interested in generating both valid and invalid in-
stances (the latter for robustness test). On the tester’s side, XPT targets the
long-standing dream of automating the generation of test cases for black-box
testing, which is routinely done by expert testers that analyse specifications of
the input domain written in natural or semiformal language. If the input is for-
malized into XML Schema, then XPT can provide a much more systematic and
cheaper strategy. The work we have described is still undergoing implementa-
tion. We will continue investigating the applicability to real-world case studies, in
particular within the e-Learning domain. The most challenging issue that comes
out from the investigation in this paper is the infeasibly high number of test in-
stances that would be generated, therefore the identification and implementation
of sensible heuristic to reduce the generated instances is compelling.

References

1. W3CXML: W3cxml. http://www.w3.org/XML/ (1996)
2. W3CXMLSchema: W3c xmlschema. http://www.w3.org/XML/Schema (1998)
3. XMLTestSuite: Extensible markup language (xml) conformance test suites.

http://www.w3.org/XML/Test/ (2005)
4. NIST: Software diagnostics&conformance testing division: Web technologies.

http://xw2k.sdct.itl.nist.gov/brady/xml/index.asp (2003)

Systematic Generation of XML Instances 129

5. RTTS: Rtts: Proven xml testing strategy. http://www.rttsweb.com/services/
index.cfm (nd)

6. SQC: Xml schema quality checker. http://www.alphaworks.ibm.com/tech/xmlsqc
(2001)

7. W3CXMLValidator: W3c validator for xml schema. http://www.w3.org/2001/03/
webdata/xsv (2001)

8. XMLJudge: Xml judge. http://www.topologi.com/products/utilities/xmljudge.
html (nd)

9. EasyCheXML: Easychexml. http://www.stonebroom.com/xmlcheck.htm (nd)
10. Li, J.B., Miller, J. In: Testing the Semantics of W3C XML Schema. COMPSAC

2005 (2005) 443 – 448
11. XMLSpy: Xml spy. http://www.altova.com/products ide.html (2005)
12. Toxgene: Toxgene. http://www.cs.toronto.edu/tox/toxgene/ (2005)
13. SunXMLInstanceGenerator: Sun xml instance generator.

http://wwws.sun.com/software/xml/developers/instancegenerator/index.html
(2003)

14. Ostrand, T., Balcer, M.: The category-partition method for specifying and gener-
ating functional tests. Communications of ACM 31(6) (1988)

15. Basanieri, F., Bertolino, A., Marchetti, E.: The cow suite approach to planning
and deriving test suites in uml projects. In: Proc. Fifth International Conference
on the Unified Modeling Language UML 2002, LNCS 2460, Dresden, Germany
(2002) 383–397

16. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Partition testing from xml schema.
Technical report ISTI-45/2005 (2005)

17. DocumentObjectModel: Document object model. http://www.w3.org/DOM/
(2005)

18. AAVV: IMS learning information package v.1.0.1. On-line at:
http://www.imsglobal.org/content/packaging/cpv1p2pd/
imscp oviewv1p2pd.html (2005)

http://www.rttsweb.com/services/index.cfm (nd)
http://www.rttsweb.com/services/index.cfm (nd)
http://www.w3.org/2001/03/webdata/xsv (2001)
http://www.w3.org/2001/03/webdata/xsv (2001)

	Introduction
	Related Work
	Category Partition
	Automatic Instances Generation
	XML Schema Analyzer
	Test Strategy Selection

	The TAXI Tool
	Considerations on Applicability of the Approach
	Number of Conforming Instances
	XPT vs. Random Generation

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

