
 1

An Automated Test Strategy Based on UML Diagrams

F. Basanieri *, A. Bertolino *, E. Marchetti *, A. Ribolini *, G. Lombardi **, G. Nucera **

*Istituto di Elaborazione dell’Informazione
CNR, Pisa, Italy

** ERICSSON LAB ITALY

f.basanieri@iei.pi.cnr.it
bertolino@iei.pi.cnr.it

e.marchetti@iei.pi.cnr.it
a.ribolini@iei.pi.cnr.it

gaetano.lombardi@tei.ericsson.se
giovanni.nucera@tei.ericsson.se

Abstract

This is a work-in-progress report about the Cow_Suite tool currently under development for
automating CoWTeSt (COst Weighted TEst STrategy), an original strategy for selecting and
prioritarising test cases. The tool supports managers to schedule and make cost estimates of the
integration test stages since the early phases of development. The derivation of test cases is based
on the software analysis and design documentation, and uses the UML-based original test
methodology UIT, Use Interaction Test. We describe the tool architecture and show the provided
features through an example of application to a real case study with some results.

CowSuite tool and CoWTeSt have been planned and developed by PISATEL. PISATEL is a

Software Laboratory established in Istituto Elaborazione Informatica (IEI) Pisa in cooperation with
Ericsson Lab Italy (ERI). Starting in January 2001, teams from IEI and ERI are conducting joint
applied research on the Software Engineering, and its application to telecommunications sector.
The hope is that, on the one hand, these projects will make evident to the research community the
complexity of the activities and the real world problems and constraints faced by the industrial
partner while, on the other, they will provide an effective benchmark for the validation and
refinement of the latest research results from the academic labs.

1. Introduction

In this paper we report about the current state of an on-going research project aimed at
developing methods and tools for automated testing based on UML [5], [6]. The two main
requirements of our project are the following:
• test planning and management should use the UML diagrams developed during specification

and design, but should not impose to the UML designers any additional formalism, or ad-hoc
effort specifically for testing purposes.

• the test cases should be derived in incremental, systematic way and in manageable numbers in
line with project costs and schedules.

Several emerging research proposals for UML based test methods, e.g. [3] and [4], require
extensive additional effort or even additional formalisms from UML designers: we believe that such
proposals can hardly find wide industrial acceptance. On the contrary, our goal is to use the existing
design diagrams and even to have tools compatible with currently available tools for UML design,
so that the proposed test methodology can be adopted by industries using UML with very little
additional effort. Of course, one problem to handle here will be the inherent subjectivity and
potential ambiguity of UML diagrams.

With regard to the second requirement, we believe that, again for pushing industrial acceptance,
any test methodology should incorporate considerations of testing cost and project schedule. For

 2

very complex applications, such as modern distributed systems, the testing stage can be very
expensive, and very difficult to manage in incremental way. We will rely on the UML design to
guide an incremental test strategy: of course, we can do this to the extent that the designers apply
rigorous and formalised design methodologies.

In response to the above requirements, we have developed a test methodology that consists of
two main components: a method to derive the test cases, called UIT (Use Interaction Test), already
presented in [1], and a test management strategy, called Cowtest (Cost Weighted Test Strategy),
presented in [2], to help decide which and how many, among the derived test cases, should be
launched. Cowtest and UIT are currently being implemented in a unified test environment, called
Cow_Suite (Cow pluS UIT Environment), whose architecture is presented here.

In particular, it is possible to apply Cow_Suite in two ways: if a certain resource investment has
been fixed for a testing phase, it is possible to estimate how many test cases to execute, but more
importantly to prioritise them and pick those that are judged more useful to assure quality, stability
and to evidence problems of the developed product. On the other hand, if the testing stopping rule is
given by the coverage of a fixed percentage of functionalities (e.g., 90% functional coverage),
Cow_Suite helps to evaluate from the very first stages the cost of such a target and consequently to
choose the most suitable test cases, as for the previous case.

Cow_Suite uses the UML diagrams already developed for the analysis and design phases. To
derive the test cases the tool uses the UML-based UIT methodology. Since Cow_Suite has been
designed to be compatible with the Rational Rose environment [7], in particular using REI
(Rational Rose Extensibility Interface), it can be easily adopted by the many industries already
using this package, with little additional effort.

The paper is organized as follows: in Section 2 we give the basic knowledge required for the
application of the UIT methodology. Then in Section 3 we describe the details of the Cowtest
strategy and present in Section 4 and 5, respectively, the tool architecture and a case study.

2. Use Interaction Testing

The method implemented in Cow_Suite for test derivation is UIT. We report here only a brief
summary of it, remanding to [1] for the complete description. The UIT method derives integration
test cases, at different integration or abstraction levels, from UML design diagrams.

In Figure 1 we show an activity diagram describing the steps necessary for test derivation
according to UIT. The first step consists in finding all the Use Case Diagram (UCDs) and Use
Cases (UCs).

 3

a n a l y z e U M L
d e s i g n

f i n d U s e C a s e
D i a g r a m s

S t e p 1 : f i n d
U s e C a s e s

S t e p 2 : a n a l y s i s o f S e q u e n c e a n d C l a s s
D i a g r a m s r e l a t e d t i t h e s e l e c t e d U s e C a s e

* [f o r a l l f o u n d U s e C a s e s]

S t e p 3 : T e s t
U n i t d e f i n i t i o n

S t e p 4 : r e s e a r c h o f S e t t i n g s
a n d I n t e r a c t i o n s C a t e g o r i e s

S t e p 5 : T e s t S p e c i f i c a t i o n
c o n s t r u c t i o n

S t e p 6 : s e a r c h o f M e s s a g e s S e q u e n c e s
a n d T e s t C a s e s d e f i n i t i o n

S t e p 7 : d e f i n i t i o n o f
U s e C a s e T e s t S u i t e

d e f i n i t i o n o f
T e s t F r a m e

[n o m o r e U s e C a s e s t o a n a l y z e]

[o t h e r U s e C a s e s t o a n a l y z e]

Figure 1: Activity diagram for test derivation

Then the Sequence Diagrams (SDs) and the Class Diagrams (CDs) are analysed (Step2),

identifying the messages that the objects in the SDs exchange with each other, and the relative
parameters. Now, each object inside a SD is considered as a Test Unit, in the sense that it can be
separately tested and represents a possible use of system (Step3). For each of these Test Units, the
relevant Settings and Interactions Categories are derived that are, respectively, environment
parameters (or state variables) and messages coming from other Test Units (Step4). In this phase to
capture information about parameters values and messages definition we also use the information of
the related Class Diagrams.

A Test Specification is derived finding for each identified category of a Test Unit all the possible
values and constraints (Step 5). Then, observing the temporal ordering of SD messages, it is
possible to find the Message Sequences, i.e., a set of messages exploited by objects to define and
elaborate specific functionalities. Inside each Message Sequence, we can find a set of Interactions
Categories (messages of this sequence) and Settings Categories (attributes that affect the messages)
(Step6). Finally, an executable Test Case is constructed from a Test Specification, taking each of
every possible choice, for each involved category (Step7).

We report below an example of some test cases, generated for the example described in Section
5. Note that the description of the test cases at this level actually remains abstract and can be
considered as the specification of test classes. The real executable test cases will be derived
instantiating the involved categories values.

TEST CASE 7
Description:
PreCondition:

Test Case 6
 Flow of event:

AccessAgent->getAccessType()
 [Post: checkCLIP(SetupMsg, caller, AccessType)

and CallCase elaboration from Li+i.TestCase 4]
Categories:
SettingsCategories:

SetupMsg =
AccessType =

InteractionsCategories:
getAccessType()

PostCondition:
Comment:

 4

TEST CASE 8.1

Description:
PreCondition:

Test Case 7
 Flow of event:

[if pEnterprise!=NULL]
 NonStdSetup->setEnterprise
 routingResult =doLRQ(caller, callee, Enterprise, callcase,
 AccessAgent, BGAResult)

Categories:
SettingsCategories:

PEnterprise =
Caller =
Callee =
Callcase =
AccessAgent =
BGAResult =

InteractionsCategories:
setEnterprise =
doLRQ =

 PostCondition :
 Comment :

TEST CASE 8.2

Description:
PreCondition:

Test Case 7
 Flow of event:

getEnterpriseForSourceAddress(caller)
 [else]
 routingResult =doLRQ(caller, callee, Enterprise, callcase,
 AccessAgent, BGAResult)

Categories:
SettingsCategories:

PEnterprise =
Caller =
Callee =
Callcase =
AccessAgent =
BGAResult =

InteractionsCategories:
getEnterpriseForSourceAddress =
doLRQ =

PostCondition:
Comment:

TEST CASE 8.3

Description:
PreCondition:

Test Case 7
 Flow of event:

[if RoutingResult=NULL or BGAResult = NULL]
[get release reason release(Handler, reason) from Li+1.TC]

Categories:
SettingsCategories

Handler =
Reason =

InteractionsCategories
PostCondition:
Comment :

 5

3. Cowtest strategy
In this section we summarise the strategy that will be implemented by the Cow_Suite for

selecting test cases according to various possible industrial needs. The complete description of how
to derive the basic structure (a weighted tree) used for test derivation and the test case selection in
view of different project exigencies is in [2].

Starting from the main UCD, describing the system functionalities at a very high level, the UCDs
are organized in a hierarchical tree. Then to each Use Case we associate the relative SDs which
describe the objects interactions, and exchanged messages, used to realize the Use Case scenarios.
Finally from each SD the test cases are derived using the UIT method. In Figure 2 we show an
example of a tree relative to the case study that will be presented in Section 3.

After the tree construction, it is necessary to label every node with a value representing in a
sense the “importance” of this node (be it a UC, or a SD scenario) with respect to the other nodes at
the same level in the tree. These values, called weights, must belong to the [0,1] interval and must
be assigned (by the tester) in such a manner that the sum of the weights associated to all the
children of one node is equal to 1.

The weight should be as high as critical is the functionality represented by the associated node
(UC or SD). These values contribute to define a relative importance factor, in terms of how risky is
that node and how much effort should we put to test it, for each element belonging to the integration
stage considered.

The last step of Cowtest strategy is to calculate for every node its real final weight, i.e. the
product of all the nodes weights on the complete path from the root to this node. The final weight
associated with each leaf of the tree becomes therefore an element of discrimination for choosing
amongst the tests to execute and will be used in two different manners.

The first is the case in which a certain test budget is available, or a fixed number of test cases
must be executed. In such a case, Cow_Suite selects the most suitable distribution of the test cases
among the functionalities developed on the basis of the leaves weights and with respect to the
available budget.

The second situation considered is that a certain percentage of functionalities must be covered
(e.g. 90%). In this case the tool can drive the functional choice, highlighting the most critical system
functionalities and properly distributing the test cases.

4. Cow_Suite Architecture

Cow_Suite is developed using the Rational Rose Extensibility Interface (REI)1. The REI object
(available with the Rational Rose package) can be included directly in Visual Basic or C++ projects
using the Microsoft OLE (Object Linked and Embedded) interface system [8].

The tool is composed by six different modules:
1 MDL Analyser
2 Test Tree Generator
3 Weights Manager
4 Test Case Generator
5 Test Case Builder
6 Test Case Checker

1 The tool works in Microsoft environment (Windows 95/98/NT/2000) and is being developed using Microsoft Visual
Studio (version 6) with Service Pack 4.0. Moreover Cow_Suite requires the Visual Basic RunTime (version 6 with
Service Pack 4.0) and Rational OLE server available as Type Library.
The platform requirements of the tool are:
- Microsoft Windows 95/98/NT/2000
- minimum Pentium 150MHz or fasters CPU
- minimum 64Mbyte of RAM (recommended 128Mb RAM)
- minimum 65Mb of disk space
- Rational Rose or server REI (by TLB) installed

 6

MDL Analyser: This module analyses the Rose description of the project model (given in a .mdl
file) deriving the following components: Classes (with their attributes and methods), Actors,
UseCases, Sequence Diagrams, Package Diagrams /Class Diagrams, Activity Diagram. In this
manner, the information necessary to apply the test selection strategy is extracted and passed as an
input to the next module.
Test Tree Generator: using the information derived by the MDL Analyser, all the UCDs and SDs
are organized in a hierarchical tree. The tool associates to each node: a level identification number,
representing the position of the node in the tree, and a default weight such that the sum of this
weight plus the weights associated to all its brothers is equal to 1. The identification number is
visualized below each tree level. The weight of each node is visualized in a box positioned before
the node-name (see Figure 2).
In detail the tree structure is derived considering the explicit links (i.e. the link between the
OpenSpecification and the diagram) or using the associations (with or without stereotypes) and the
relations between the classes.
Weights Manager: this module interacts with the user for assigning the real weight to each node
and choosing the criterion for test cases selection.
The first kind of interaction can be driven in two different ways: selecting directly a node on the
tree or a level number. In the former the user can modify directly on the visualized tree the node’s
weight using the form associated to the node. In the latter only the chosen level of the tree is
entirely visualized and the user can insert the proper values for each node. Checking that the sum of
the user assigned weights of a level nodes is equal to 1 is also a task of this module.
The second user interaction is useful to determine the criterion to be used for test selection: fixing
the maximum number of test cases to be executed or the percentage of functionalities to be covered.
According to the chosen selection criterion the proper set of test cases can be derived.
Test Case Generator: the tasks of this module are:

a) To query the user for the deepest integration level he/she is interested in and consequently
calculate the final weight of every leaf.

b) To implement the UIT method for test generation
c) To associate to each SD its test cases, possibly organizing them in a hierarchical manner.
d) To calculate and visualize the number of test cases for each SD depending on the chosen test

case selection criterion.
e) To associate to each SD the frames of the test cases that should be instantiated.

Test Case Builder: this module interacts with the user for test case implementation, asking for the
necessary parameters values and checking if the test case has been already instantiated.
In the current state Cow_Suite is able to visualize in a tree structure all the test cases generated for a
SD. Inside a generated test case (see Section 2) we can find the list of all its Settings and
Interactions categories and their values. Moreover, the user can interact with the tool adding and
removing the categories or eventually changing parameters, operations, categories values or even
test case structure. The changes involving the UML design are finally saved in a new .mdl file.
Test Case Checker:
The tool maintains information about the test cases generation. This module will realize the
comparison of different versions of the same .mdl file. The discovered differences, like, for
example, the existence of new test cases or changes in those already generated, are saved into a
separate file. The evaluation of the cost and impact required for the updates to the test plan with
respect to the “official version” is derived analyzing this file.

 7

Figure 2: Annotated Cowtest tree

5. Example
We present an example from a case study on which we are applying and developing Cow_Suite.

The case study consists of a real project provided by a Telecommunication software developer. We
consider here only a part of the analysed system, named the Call Manager.

The Call UC can be divided into tree sub-UCs:
1 CallSetup, that is the phase in which caller and receiver are identified and localized,
2 Connect, in which the partners, after their connection, can communicate with each other;
3 Release, in which one of the users involved in the connection terminates the call;

In Figure 2 we can see the complete tree with all UCs and SDs involved, as developed according
to the Cowtest strategy.

A SD describes one of the subsystem functionalities. Each functionality can be realized inside a
software component, like modules or packages, or obtained by the interactions of several different
components. In this manner the test cases can be developed both to verify the integration between
different system parts and to investigate on the specific interactions between implementation
objects.

Cow_Suite currently does not yet automatically derives the results showed in the following
tables relative of the presented case study. We report these tables for giving an idea of how the tool
will behave. As already explained, the leaves weights can be used in different manner depending on
the project needs.

 8

Table 1 is a summary of the situation in which the test manager uses Cowtest having a fixed
number of test cases to develop, in the example shown 500, and needs to decide on how to
distribute these test cases among the specified functionalities. The table is organized in the
following manner: the first and the second columns hold respectively the nodes names and the tree
levels. The third column shows the node weights as the user inserted them in the tree. In the fourth
and fifth columns there are the final weights that Cow_Suite will use to distribute the test cases
among the leaves. Precisely, the fourth column reports the final absolute weight of each node,
obtained by multiplying the relative weights of all nodes between it and the root. The fifth column
only considers the absolute weights for all leaves at the considered nesting level (5th level, in the
example). So, for example, considering the SD relCompl (SD_Release_relCompl in the tables) its
final weight (0.45) is given by the product of its weight (0.15) times its father’s weight (0.3).

In the same manner we calculate the final weight of the SD SendTryNextDestination
(SD_TermCallSetupToExternalNetwork_SendTry in the tables) (0.0108=0.15*0.45*0.4*0.4).
Finally, the obtained numbers of tests for each leaf are reported in the sixth column.

Table 1: Distribution of test case at different integration stages

We report in Table 2 some results obtained for the situation that a functional coverage is fixed.

The weights distribution as well as the number of test case (NTest) will be redistributed and
assigned by the tool (see [2] for more details).

The table is organized in the following manner: the first five columns have the same meaning of
the previous table. The remaining columns are divided in two parts showing, respectively, the
normalized weight and the minimum number of tests with respect to the fixed coverage percentage.

Call 1 1 1 0

Cal lSe tUp 2 0,4 0 ,4 0
C o n n e c t 2 0,3 0 ,3 0

Release 2 0,3 0 ,3 0

OrigCallSetup 3 0,6 0 ,24 0

TermCallSetup 3 0,4 0 ,16 0
OrigConnect 3 0,6 0 ,18 0,18 90

TermConnect 3 0,4 0 ,12 0,12 60

OrigRelease 3 0,45 0,135 0 , 1 3 5 67,5
TermRelease 3 0,25 0,075 0

SD_Release_relCompl 3 0,15 0,045 0 , 0 4 5 22,5

SD_Release_connDisk 3 0,15 0,045 0 , 0 4 5 22,5
OrigCallSetupFromExternalNetwork 4 0,45 0,108 0

OrigCal lSetupFromTerminal 4 0 ,25 0,06 0

SD_OrigCal lSetup_AttachOrig 4 0,15 0,036 0 , 0 3 6 18
SD_OrigCal lSetup_Rasinteract ionOrig 4 0,15 0,036 0 , 0 3 6 18

TermCal lSetupToExternalNetwork 4 0,45 0,072 0

TermCal lSe tupToTermina l 4 0 ,25 0,04 0

SD_TermCal lSetup_AttachTerm 4 0,15 0,024 0 , 0 2 4 12
SD_TermCallSetup_Rasinteract ionTerm 4 0,15 0,024 0 , 0 2 4 12

SD_TermRelease_ReleaseComplete 4 1 0,075 0 , 0 7 5 37,5

RoamingNumbersAnalys is 5 0,3 0 , 0 3 2 4 0,0324 16,2

O r i g B G A _ O C S F E N 5 0,3 0 , 0 3 2 4 0,0324 16,2
H o m e R o u t i n g _ O C S F E N 5 0,3 0 , 0 3 2 4 0,0324 16,2

CheckMediaRes t r ic t ion_OCSFEN 5 0,1 0 , 0 1 0 8 0,0108 5,4

O r i g B G A _ O C S F T 5 0,4 0,024 0 , 0 2 4 12
HomeRout ing_OCSFT 5 0,4 0,024 0 , 0 2 4 12

CheckMediaRes t r ic t ion_OCSFT 5 0,2 0,012 0 , 0 1 2 6

LocalRout ing_TCSTEN 5 0,35 0 , 0 2 5 2 0,0252 12,6
CheckMediaRes t r ic t ion_TCSTEN 5 0,15 0 , 0 1 0 8 0,0108 5,4

T e r m B G A _ T C S T E N 5 0,35 0 , 0 2 5 2 0,0252 12,6

SD_TermCal lSetupToExternalNetwork_SendTr 5 0,15 0 , 0 1 0 8 0,0108 5,4
LocalRout ing_TCSTT 5 0,4 0,016 0 , 0 1 6 8
CheckMediaRes t r ic t ion_TCSTT 5 0,2 0,008 0 , 0 0 8 4

T e r m B G A _ T C S T T 5 0,4 0,016 0 , 0 1 6 8

Tota l 1 500

NTtestFinal
Leaves
weights

Nodes name Nodes
weights

Tree
Levels

Final
Nodes

weights

 9

Table 2: Weights normalization for different coverage percentages

References
[1] Basanieri, F., Bertolino, A., “A Practical Approach to UML-based Derivation of Integration Tests”, in

QWE2000 conference proceeding, Bruxelles, November 20-24, 3T.
[2] Basanieri, F., Bertolino, A., Marchetti, E., “CoWTeSt: A Cost Weighed Test Strategy”, accepted for:

ESCOM-SCOPE 2001, London, England, 2-4 April 2001.
[3] Hartmann, J., Imoberdof, C., Meisenger, M., "UML-Based Integration Testing", in ISSTA 2000

conference proceeding, Portland, Oregon, 22-25 August 2000.
[4] Offutt, J., Abdurazik, A., "Generating Test from UML Specifications", in UML conference proceeding,

Fort Collins, CO, October 1999.
[5] Rumbaugh J., Jacobson I., Booch J. “The Unified Modeling Language Reference Manual”, Addison

Wesley, 1999.
[6] UML Documentation version 1.3 Web Site. On-line at

http://www.rational.com/uml/resources/documentation/index.jsps/
[7] http://www.rational.com/products/rose/index.jsps
[8] http://msdn.microsoft.com

OrigConnect 3 0,6 0,18 0,18 0,2555366 6 0,2196193 7 0,1965924 8 0,18 23

TermConnect 3 0,4 0,12 0,12 0,1703578 4 0,1464129 5 0,1310616 5 0,12 15

OrigRelease 3 0,45 0,135 0,135 0,1916525 4 0,1647145 5 0,1474443 6 0,135 17

SD_TermRelease_ReleaseComplete 4 1 0,075 0,075 0,1064736 2 0,0915081 3 0,0819135 3 0,075 9
SD_Release_relCompl 3 0,15 0,045 0,045 0,0638842 1 0,0549048 2 0,0491481 2 0,045 6

SD_Release_connDisk 3 0,15 0,045 0,045 0,0638842 1 0,0549048 2 0,0491481 2 0,045 6

SD_OrigCallSetup_AttachOrig 4 0,15 0,036 0,036 0,0511073 1 0,0439239 1 0,0393185 2 0,036 5
SD_OrigCallSetup_RasinteractionOrig 4 0,15 0,036 0,036 0,0511073 1 0,0439239 1 0,0393185 2 0,036 5

RoamingNumbersAnalysis 5 0,3 0,0324 0,0324 0,0459966 1 0,0395315 1 0,0353866 1 0,0324 4
origBGA_OCSFEN 5 0,3 0,0324 0,0324 0 0 0,0395315 1 0,0353866 1 0,0324 4

HomeRouting_OCSFEN 5 0,3 0,0324 0,0324 0 0 0,0395315 1 0,0353866 1 0,0324 4

LocalRouting_TCSTEN 5 0,35 0,0252 0,0252 0 0 0,0307467 1 0,0275229 1 0,0252 3

TermBGA_TCSTEN 5 0,35 0,0252 0,0252 0 0 0,0307467 1 0,0275229 1 0,0252 3
SD_TermCallSetup_AttachTern 4 0,15 0,024 0,024 0 0 0 0 0,0262123 1 0,024 3

SD_TermCallSetup_RasinteractionTern 4 0,15 0,024 0,024 0 0 0 0 0,0262123 1 0,024 3

OrigBGA_OCSFT 5 0,4 0,024 0,024 0 0 0 0 0,0262123 1 0,024 3

HomeRouting_OCSFT 5 0,4 0,024 0,024 0 0 0 0 0,0262123 1 0,024 3
LocalRouting_TCSTT 5 0,4 0,016 0,016 0 0 0 0 0 0 0,016 2

TermBGA_TCSTT 5 0,4 0,016 0,016 0 0 0 0 0 0 0,016 2
CheckMediaRestriction_OCSFT 5 0,2 0,012 0,012 0 0 0 0 0 0 0,012 2

CheckMediaRestriction_OCSFEN 5 0,1 0,0108 0,0108 0 0 0 0 0 0 0,0108 1

CheckMediaRestriction_TCSTEN 5 0,15 0,0108 0,0108 0 0 0 0 0 0 0,0108 1

SD_TermCallSetupToExternalNetwork_SendTr 5 0,15 0,0108 0,0108 0 0 0 0 0 0 0,0108 1
CheckMediaRestriction_TCSTT 5 0,2 0,008 0,008 0 0 0 0 0 0 0,008 1
Call 1 1 1 0 0 0 0 0 0 0 0 0

CallSetUp 2 0,4 0,4 0 0 0 0 0 0 0 0 0

Connect 2 0,3 0,3 0 0 0 0 0 0 0 0 0

Release 2 0,3 0,3 0 0 0 0 0 0 0 0 0
OrigCallSetup 3 0,6 0,24 0 0 0 0 0 0 0 0 0

TermCallSetup 3 0,4 0,16 0 0 0 0 0 0 0 0 0

TermRelease 3 0,25 0,075 0 0 0 0 0 0 0 0 0

OrigCallSetupFromExternalNetwork 4 0,45 0,108 0 0 0 0 0 0 0 0 0
OrigCallSetupFromTerminal 4 0,25 0,06 0 0 0 0 0 0 0 0 0

TermCallSetupToExternalNetwork 4 0,45 0,072 0 0 0 0 0 0 0 0 0

TermCallSetupToTerminal 4 0,25 0,04 0 0 0 0 0 0 0 0 0

Total 1 1 22 1 33 1 38 1 125

nwf norm/MinNTest nwf norm /MinNTest

70%coverage 80%coverage/ 90%coverage/ 100%coverage/Final
Leaves
weights

nwf norm /MinNTest nwf norm /MinNTest

Nodes name Tree
Levels

Nodes
weights

Final
Nodes

weights

