
UML-based Performance Analysis Techniques

Applied to Software Multiprojects Management

F.. Basanieri, A. Bertolino, E. Marchetti1

Istituto di Scienza e Tecnologie dell'Informazione
“Alessandro Faedo” , CNR

R. Mirandola2

Dip. Informatica, Sistemi e Produzione
Università di Roma TorVergata

Abstract1

Performance engineering techniques have been
traditionally applied to computer devices and networks
and more recently also to software systems. In this paper
we propose to use them in an unusual context, i.e., in
multiproject software development environment to
support manager’s decisions. The basic idea is that
project teams correspond to the processing elements of a
performance model, and project intermediate phases to
the tasks to be performed within established time
intervals.

The workflows and organization structures are
modelled by annotated UML diagrams, so that managers
do not need be expert in performance engineering
modelling notations. In fact, a tool transforms such
diagrams into queueing network models, solving which
the predicted completion times for the modelled processes
can automatically be obtained. As we use performance
analysis techniques, our method can naturally take into
account people multitasking on several contemporaneous
projects, as well as delays and inefficiencies due to
meetings, communications, and personnel overutilization.
An example is used to illustrate the approach.

Keywords

Queueing Networks, Project Management, Software
Performance Engineering, UML.

1. Introduction

Notwithstanding the emerging new software
technologies (e.g., Internet, Mobile code, UML) and
paradigms (e.g., COTS, Component-based, Product
Families), the classical old problems of personnel
management and project planning remain two very
critical pieces of the software process puzzle. In this

1 Istituto di Scienza e Tecnologie dell'Informazione “Alessandro
Faedo”, CNR, Pisa, 56124, Italy, f.basanieri@iei.pi.cnr.it,
bertolino@iei.pi.cnr.it, e.marchetti@iei.pi.cnr.it

2 Dipartimento di Informatica, Sistemi e Produzione Università
di Roma TorVergata, Roma, 00179, Italy
mirandola@info.uniroma2.it

respect, managers have to face today even more difficult
problems than in the past, because modern projects are much
larger and more complex, while the time-to-market
continuously shrinks down to almost unfeasible limits, and
system development is increasingly often distributed across
remote factories, as well as between people teams with high
turnovers.

One consequence of today's software market
competitiveness is that project teams are multitasked between a
high number of processes. As lively reported by Lister [1], this
can well be one of the main reasons why projects are late.
When project planning is made, and even more when an
unexpected maintenance intervention is required, it is hardly
the case that the people to be involved are sitting down waiting
for that task: most of them are probably already facing hard-to-
meet deadlines in other projects. To make a realistic planning,
the manager needs to take into account the current workloads
of human resources and take the most appropriate decisions for
meeting the project deadlines.

This latter situation is somehow similar to what is
routinely done in computer performance engineering. We are
taking the metaphor that project teams correspond to the
processing elements in performance models, and project
intermediate phases are the tasks to be performed within
established time intervals. Following this metaphor, the idea
we propose in this work is that well known techniques from the
software performance analysis field can be usefully adapted to
the purpose of handling personnel multitasking and of
optimising busy workloads in software project management.
This idea actually is not completely new; we provide a survey
of related work in the next section.

However, as pointed out in [2], performance modelling
techniques used to be "perceived as difficult and time
consuming" by software engineers. To overcome this problem,
we provided the method with a UML interface. UML [3], [4] is
in fact rapidly becoming the standard notation for analysis,
design and implementation of Object Oriented systems.

The method to derive queueing networks from UML
diagrams was originally proposed by one of the authors in [5].
The method in its original conception uses a subset of the
standard UML diagrams, with simple additional annotations:
the Use Case Diagram, to derive the user profile and the
software scenarios (i.e., the use cases); the Sequence Diagram,

mailto:f.basanieri@iei.pi.cnr.it
mailto:bertolino@iei.pi.cnr.it
mailto:e.marchetti@iei.pi.cnr.it
mailto:mirandola@info.uniroma2.it

to derive the software model, and the Deployment
Diagram, to derive an hardware platform model and to
identify the hardware/software relationships. The method
then extracts from these diagrams the main factors
affecting system performance and combines them to
generate a performance model (see an example of its
application to distributed systems in [6]).

Here, we apply that method to solve the several
organization and planning problems a manager deals with
day-by-day. In particular, the functionalities described in
the Use Case Diagram represent the activities planned for
product development or maintenance. Each Sequence
Diagram represents one of the possible scenarios for a
related Use Cases; in particular, the objects in a Sequence
Diagram represent the different process steps involved.
Finally, in the Deployment Diagram, a node is associated
to a team, and the components inside a node represent the
tasks assigned to that team.

Indeed, UML is now widely used by many industries
in the design phase, to describe all the aspects and
functionalities of a software system under development.
We believe that the UML expressing power can be
applied also to more abstract situations such as the
management scenarios. Surely our method requires a
slight mind-shift from managers already acquainted with
UML, but not the learning of new languages or
specialized notations. We are confident that the approach
we propose is easily applicable with few additional effort
or cost for the software realities already accustomed to
UML use.

In the next section, we provide a brief review of
related work. In Section 3, we give some basic concepts
used in our method, and in Section 4 outline the case
study on which the method is experimented. Then, in
Section 5, we describe the method, step by step. In
Section 6, we illustrate some results. We finally outline
conclusions and future work in Section 7.

2. A Brief Literature Survey

A voluminous literature about project management
and development exists, but little of it treats the problem
of multiprojects planning and of people multitasking on
several parallel projects. We report in Section 2.1 a brief
survey of previous related studies (we refer to [7] for a
more complete review of the literature) and in 2.2 of the
most widespread decisional tools.

2.1. Related Studies

Two crucial aspects of project management during
development are resources distribution and activity
planning. These issues belong to a more general research
field that is Concurrent Engineering (CE) [8]. This
discipline became popular with the studies of Imai et al.

[9] and Takeuchi and Nonaka [10] and has greatly
influenced both the academic and the industrial
approaches to production. However, these works focus in
organizing the tasks within a single project, taking into
account the decomposition of a complex product design
into smaller activities and their subsequent coordination.

Considering the distribution of resources in a
multiprojects environment, which is our study context,
PERT (Project Evaluation and Review Technique) and
CPM (Critical Path Methods) [11] are probably the first
proposed methods. Both refer to an idealized flow of
project activities, in which no new project is introduced
over time and activity durations are treated as
deterministic. Markov chain models [12], [13], which
assume an activity time exponentially distributed and use
matrix methods for deciding the task time order in
development [14], were the natural subsequent
evolutions.

The work presented here is close to Adler et al.’s
[15]. These authors in fact study the problem of personnel
organization and resources distribution among several
projects developed in parallel, and like us use queueing
networks and stochastic processing network models to
represent product development and identify the
bottlenecks in task scheduling. The modelling technique
proposed is however different and somehow ad hoc. The
authors focus on five basic process elements: jobs, tasks,
procedure constraints, resources, and flow management
control. In particular, a single process may need to handle
a variety of job types, which in turn are divided in tasks
(i.e., activities or operations). Tasks are connected by
precedence relations. The resources are engineers and
technicians, who are the units that execute the tasks. The
flow management control represents how the resources
executed a job’s constituent tasks. With reference to [15]
Lock [16] identifies a sixth element consisting of the
assessment of individual contributions.

More recently queuing theory has been applied to
model software maintenance requests [17] and to
management planning [18]. Specifically, in the latter
case, a queueing based approach for staffing process
management and for evaluating service levels is
presented. The nodes of a multi-stage, multi-center
queueing model are associated to the different
maintenance phases. Each stage is considered in series
and each entering request goes through a sequence of
activities before leaving the system.

2.2. Decisional Tools

Decisional support managers can use generally is of
two kinds. One consists in techniques or methods that
visualize resources and personnel and distribute them
among the phases of project development. Examples are
represented by the traditional Control Charts or Gantt

Charts [14], or the more innovative Design Structure
Matrix (DSM) [19] which can display the interactions
between different teams and process activities.

These methods are extremely intuitive and often
supported by tools, but generally the validity of the plans
relies strongly on the subjective skill of the managers.
Besides, the use of these techniques in a multiprojects
context could be rather difficult.

The second kind of decisional support consists of
specialized management tools. Microsoft Project [20] or
the Kerzner Project Management Maturity Online
Assessment tool [21] represent two examples of specific
tools: they provide a valid help for maintaining an
updated database of the available people and resources,
and for producing and visualizing a project plan.

Recently the idea of readapting existing tools for
management purposes is acquiring wider spread, also for
economic reasons, and some proposals can be found in
literature. An example is the work of Dickinson et al.
[22], which shows how to use the Dependency Matrix in
combination with the existing Portfolio tools to support
the decisional process, by analysing the interdependences
between projects and combining them together. Another
solution is presented in [23], in which the authors propose
a tool for production management optimisation that uses
Gantt Charts and PERT diagrams for visualizing the
obtained results.

However, most existing tools consider only a specific
aspect of management, focusing for example either on the
completion time or on the personnel distribution and,
more importantly, they cannot explicitly manage several
contemporaneous projects. Finally, the majority of
available tools apply ad hoc algorithms for simulating
project evolution, based on some parameter values
introduced by the user. Some of those tools generate
approximated predictions without any guarantee of
statistical significance.

3. Background

In this section we shortly provide some background
required to understand the proposed method.

3.1. Performance Concepts Used

To make the paper self-contained, in this section we
very briefly introduce some basic performance concepts
used in the following. Again, the manager does not need
be knowledgeable of these concepts to use the proposed
approach, and we only introduce them here for explaining
the internal mechanisms of the approach. In particular,
we use here the queueing networks models.

Queuing networks are the largest widespread method
in the performance field. Anyway the results presented in

this paper could be obtained via the application of other
approaches like Petri nets [24], LQN or process algebras
[25], simply by applying appropriate transformation rules
from the UML diagrams to these notations.

Our method is based on the Software Performance
Engineering (SPE) approach [26]. The SPE basic concept
is the separation of the software model (SM) from its
execution environment model (i.e., hardware platform
model or machinery model, MM).

The SM captures the essential aspects of software
behaviour; we represent it by means of Execution Graphs
(EGs). An EG is a graph whose nodes represent software
workload components and whose edges represent transfer
of control. A software workload component can be a
single instruction or a whole procedure, depending on the
granularity adopted for the model [26]; this feature makes
EGs suitable for modelling software at different levels of
detail.

EGs include several types of nodes (or blocks), such as
basic, cycle, conditional, fork and join nodes. Each node
is weighted by use of a demand vector that represents the
resource usage of the node (i.e., the demand for each
resource).

The MM models the hardware platform and is based
on the Extended Queueing Network Model (EQNM)
[27]. To specify an EQNM, we need to define: the
components (i.e., service centers), the topology (i.e., the
connections among centers) and some relevant
parameters (such as job classes, job routing among
centers, scheduling discipline at service centers, service
demand at service centers). Component and topology
specification is performed according to the system
description, while parameters specification is obtained
from information derived by EGs and from knowledge of
resource capabilities.

Once the EQNM is completely specified, it can be
analysed by use of classical solution techniques
(simulation, analytical technique, hybrid simulation [27])
to obtain performance indices such as the mean network
response time or the utilization index (see Section 5).

3.2. UML Diagrams Used

The UML modelling language is rapidly becoming the
standard notation for analysis, design and implementation
of Object Oriented systems. In the following we recall the
main characteristics of only those UML diagrams
involved in the applied methodology (for more
information see ([3], [4]).

A Use Case Diagram (UCD) (see Fig. 1) provides a
functional description of a system, its major scenarios
(i.e., use cases) and its external users called actors (an

actor may be a system or a person). It also provides a
graphic description of how external users can expect to
use the system.

Sequence Diagrams (SDs) (see Fig. 2) show a number
of objects and the messages that are passed between them
to realize the functionalities described in a specific Use
Case. SDs provide specific information about the order in
which events occur and can thus provide information
about the time required for each activity (this feature is
exploited in our method). The behaviour of one Use Case
may be given by the combination of a set of SDs.

A Deployment Diagram (DD) (see Fig. 4) shows the
configuration of run-time processing elements and the
software components, processes and objects that live on
them. It is a graph of nodes connected by communication
associations. Nodes may contain component instances
(indicating that the component lives or runs on the node),
and component instances, in turn, may contain objects
(indicating that the object is part of the component). The
DD can therefore show the mapping of components to
processing nodes.

The applied methodology uses the above cited UML
diagrams: Use Case, Sequence and Deployment
Diagrams. That is to say, a performance model can only
be obtained for those systems that are modelled by means
of at least these diagrams. Even if this may appear as a
limitation of the approach, the additional effort we
require in UML formalization will bring beneficial side
effects, as we will discuss in the following.

4. Case Study

The case study that we consider to describe the
method is an example reflecting a hypothetical (yet
realistic, we referred to [28], [29], for its conception)
software development environment and the roles of
involved people.

The software process life cycle used is a sort of
waterfall life cycle organized in three main phases:
analysis stage, functional design and main build.

The analysis stage begins with the description of
customer needs. A contract is then drafted and iteratively
updated following the changes suggested by the customer
and taking into account the constraints imposed by
project plans, costs, schedule and risks analysis. At this
stage, possible alternatives to internal code development,
such as the use of COTS or Outsourcing are considered.
This part ends with a decision between contract
acceptance or rejection.

In the case of contract acceptance, analysts and
software architects start a project plan, by which they

examine and complete requirements and specifications
and start defining test plans.

After this, the functional design phase starts. Here,
system and software architectural designs are prepared.
Therefore, a top level system architecture, identifying
hardware/software components and operator’s tasks, is
established, as well as its quality characteristics, like
performance, environmental conditions, interfaces and
security requirements.

At the end of this phase, the software detailed design
is transferred to the main build phase. The developers,
following the indications of this document, produce the
related code and establish test procedures and test cases.
In the main build phase, several critical activities may
induce delays in project completion or additional costs.
For example, problems relative to components
integration, or unexpected faults discovered in testing.
Their resolution generally requires the manager’s
intervention.

Each phase described above will be carried on with the
support of different teams. In the case study we assumed
six teams, representing different working groups that may
be involved in the development of different projects
going on contemporaneously. These teams are identified
as: managers, who lead the organization and control
activities; quality assurance team, who is responsible of
contract analysis and acceptance as well as of risk
analysis and quality evaluation; the analyst and software
architect team, who specifies system requirements, the
high level design and test plans; the design team, who
realizes software and system detailed designs; the
development team, who generates code, realizes and
integrates system and software components; and finally
testers team, who specifies and executes test cases.

The people belonging to a certain team can vary
depending on the project exigencies and the number of
projects developed at the same time. The latter factor is
very important also for predicting the completion time of
a project. We will discuss further on this in Section 6.

5. Description of the Methodology

A method to derive a performance model from
annotated UML diagrams has been proposed by one of
the authors in [5]. The contribution of this paper is the
proposal to use that method in a different context. This
required us to revise the meaning of all the objects
involved in the UML diagrams. However, once this was
done, the method itself could be applied virtually
unmodified. Indeed, it was really a nice surprise even for
ourselves to see how well the method fitted to its usage in
this new context, and how well our metaphor of project
steps=computing tasks, and processing elements=project
teams worked out.

Let us illustrate the basic steps of the method,
tailored to this new applicative context [5], [6]:

1) Functionalities Description

We describe in the UCDs, through the Use Cases, all
the functionalities corresponding to project choices or
possible real situations occurring during the software
product development.

In our case study, the UCD actor (a possible user that
interacts with the system through information

interchange) is represented by one manager. He
supervises all the activities relative to software
development or maintenance, and takes the crucial
decisions regarding the personnel and the undertaking of
new projects (see Fig. 1).

2) Deduce from the UCDs the User Profile

We annotate the arcs in the UCD with the respective
frequencies with which the specific activities that descend
from each node are expected to occur.

In-house Software
Development

Personnel organization Maintenance

COTS useDelay in COTS availability

Standard development using
Outsourcing

Delay in Outsourcing product

Collaboration failure

Accepted

NotAccepted

In MainBuild

In Functional Design

In Feasibility Study

......

Manager
p2

p3

p4

COTS

p1.2.1
p1.2.2

Outsourcing

p1.3.1
p1....

p1.3.3

Standard development
p1.1.1.2

p1.1.1.1

Problematic development

p1.1.3.1

p1.1.3.2

p1.1.3.3

p1.1.3.4

New product development

p1

p1.2
p1.3

InHouseWithOutsourcing

p1.1.1 p1.1.3

p1.1

p1.1.2

Figure 1: Use Case Diagram

Figure 1 gives an example in which every Use Case at
the highest level represents the main manager’s activities.
The manager deals with several problems with different
frequencies. The parametric values, p1, ..., p4, associated
with the edges outgoing from the actor "manager"
represent the respective portion of working time that the
manager dedicates to each of the activities modelled.
Each of these high level activities can then be detailed
into other, more refined, sub-Use Cases. Also in this case,
we specify the frequency of every single scenario. Note
that the sum of frequencies of the Use Cases associated
with a single actor or node must be equal to 1.

The level of detail down to which the UCD description
should be carried on depends on the specific situation and
is up to the manager (her) him/self.

3) For each Use Case in the UCD, generate the
corresponding scenarios, and for each scenario the
corresponding SDs

At the end of Use Case modelling, the SDs are
derived, each of them representing one of several possible
scenarios for the related Use Case. The occurrence
frequencies of a SD scenario are given by the product of
all the values associated to the edges along the path from
the actor to this SD.

We require the manager to annotate each SD with
foreseen times. As we show in Figure 2, the sequence of
time annotations in each SD simply represents the
planned effort for each step in man/months.

Each interaction in the SDs can be identified by the
tuple (l,A1,A2,t), where l is the label of the SD interaction
arrow, A1 is the name of the SD axis from which the
arrow starts, and A2 is the name of the SD axis where the
arrow ends and t the interaction occurrence time (these
labels are used in step 5 below).

4) For each SD, group sets of interactions into higher
granularity items

Whatever level of detail the manager adopts, often
the SDs derived in step 3) are too complex to allow for
the generation of a software model (EG). It is then
convenient, whenever possible, to group parts of the
diagrams into items of higher granularity.

Even simple grouping criteria could be useful: for
example, we could aggregate a set of operations that is
repeated in several SDs, or that belongs to a same process
phase. By referring to Figure 2, we grouped together the
set of interactions from “Start feasibility study” to
“Acceptance and completion”; similarly, the interactions
from “System definition” to “Test Planning", and so on.
At the end of this step, aggregated SDs are obtained.

5) Process the set of Sequence Diagrams (SDs) to
obtain the meta-EG.

On the aggregated SDs, the algorithm presented in [5]
can now be applied, that translates all the SDs into a high
level EG (called meta-EG). Each node in the EG
identifies an interaction, and corresponds to the set of
operations performed in relation to that interaction. Every
node in the meta-EG is labelled with the tuple (l,A1,A2,t)
that characterizes the translated interaction. Figure 3
illustrates an example of EG generation with proper
labels for a very simple SD. The algorithm generates a
single EG that models the set of scenarios represented by
the SDs and labels the edges with the frequencies
introduced in the UML diagrams.

6) Tailor the meta-EG to the DD, to derive an EG-
instance

The information contained in the DD is used to better
specify the obtained software model, the meta-EG, so that
it also takes into account its execution environment. The
EG thus obtained is called an EG- instance.

As we can see in Figure 4, in our approach a node in
the DD is not a hardware resource, but a team. The
components inside a node represent the tasks that the
people belonging to a team have to perform (obviously, a
team can be composed by one or more people). Project

phases can be executed with the collaboration of
components living inside different nodes of the DD.

Specifically, we substitute the names of the interacting
components within the meta-EG block labels with the
names of the specific team that accomplishes the
operation and the required time (see the next section for
an example). Furthermore, when in the label the names of
the interacting components are different, an overhead
delay due to communications among project teams (e.g.,
team meeting) is added into the performance model.

In such a way the node label in the EG-instance
corresponds to the demand vector, that specifies for each
team the work-demand relative to the modelled operation,
in terms of required man/months.

Figure 5 shows the obtained EG-instance, including
the demand vector specification, for the SDs illustrating
the In-house scenarios standard development: “accepted”
and “not accepted” (the others SDs are sketched with
dotted lines).

7) Use the DD to obtain the Extended Queueing
Network Model (EQNM) of the project teams

The EQNM topology can be derived in a
straightforward way from the DD. As already stated, in
our case the service centers model the project teams
involved in the software processes, so the number of
service centers in the network correspond to the number
of teams. The connections between different service
centers are derived from the communications represented
in the DD.

In the EQNM corresponding to the DD of Figure 4 is
shown. The center “Projects” represent the number of
projects that are carried on simultaneously.

The remaining service centers are labelled with the
name of the corresponding teams, with a pair of numbers
representing the minimum and maximum values of
people in the team. Each center is modelled by a multiple
server, where the number of active servers corresponds to
the actual number of people in the team. The
communication delay among teams (e.g., meetings,
exchange of documents,...) has been modelled by a
service center called Meeting.

8) Combine the EG-instance and the EQNM to derive
a complete performance model, and solve the model

Now, by use of well known techniques [26], the EG-
instance obtained in Step 6 can be combined with the
EQNM defined in Step 7 to achieve the complete
definition of the queueing model, precisely as it is done in
the classical SPE approach.

The obtained model can now be solved by use of
classical solution technique and tools [27] to obtain the

performance indices of interest. We show some examples
in the following section.

6. An Example and Preliminary Results

We experimented the proposed methodology on the
case study outlined in Section 4. We illustrate here as an
example the results relative to applying and solving the
model to the Use Case "New product development". With
reference to Figure 1, this corresponds to putting in the
UCD p1=1, and all the remaining occurrences p2, p3, ... =
0. We consider that in this case the manager must decide
among: developing the product using only the internal
resources (In-house software development); integrating
COTS software for some functionalities; delegating part
of product development to another developer
(Outsourcing). Each of the three cases, in turn, has been
further refined into more sub-cases (Figure 1), requiring
finer manager’s decisions.

We have developed a set of SDs elaborating the
scenarios corresponding to the identified sub-Use Cases.
We show as an example in Figure 2 one of the developed
SDs: it describes the scenario that big problems are
encountered in Main Build phase relatively to the Use
Case labelled "In-house software development".

Finally, we constructed the applicable Deployment
Diagram, as shown in Figure 4.

On the developed UML diagrams, we applied the
method described in the previous section, and we now
show the type of results that could be obtained. In
general, in order to choose the most convenient solution,
managers need to make a trade-off between the foreseen
time of completion (TC) and the amount of resources
(NR) used. For example, a short completion time, but
obtained with a too high employment (or, waste) of
resources is certainly not a good choice. Another
important factor to consider for the cases of COTS or
Outsourcing could also be the cost of software acquisition
(CS). Therefore, the manager's decision will be actually a
function of these three factors, i.e., f(TC, NR, CS). In our
method we make predictions for the factor TC under
various situations.

 : Manager

 : Analysis
stage

 : Functional
Design

 : Main
Build

1. Start Feasibility Study()

1.1. Proposal Development()

1.2. Contract preparation and update()

1.3. Risk management Plan()

2. System definition()

2.1. Project Plans()

2.2. Requirements()

2.3. Specifications()

2.4. Test Planning()

1.4. Acceptance e completion()

3. Deployment Planning()
3.1. System architectural design()

3.2. Software requirements analysis()

3.3. Software architectural design()

4. Software detailed design()

4.1. Software coding & testing()

4.2. Software integration()

4.3. Software qualification testing()

4.4. System integration()

4.5. System qualification testing()

5. Process implementation()

4.1.1. Unexpected Test Problems()

4.1.2. Test problems resolution()

4.4.1. Unexpected integration problems()

4.4.2. System integration problems resolution()

 Time

---------t1

---------t2

---------t3

---------t4

---------t5

---------t6

---------t7

---------t8

---------t9

---------t10

---------t11

---------t12

---------t13

---------t14

---------t15

---------t16

---------t17

---------t18

---------t19

---------t20

---------t21

---------t22

---------t23

---------t24

---------t25

---------t26

---------t27

---------t28

---------t29

---------t30

---------t31

---------t32

---------t33

---------t34

---------t35

Figure 2: Software Development SD with Problem in Main Build
Phase

We took the following assumptions:

A1. all the projects of the same type (i.e., In-house, or
COTS, or Outsourcing) take the same number of
man/months

A2. the frequencies of problematic scenarios is null, i.e.,
in practice we reduce here the analysis only to the
three main scenarios of successful In-house, COTS
and Outsourcing projects

Clearly, such assumptions might see too restrictive,
and indeed they are. But they are not required at all to
apply the model, we only introduced them to make the
analysis simpler.

With reference to assumption A1, in general we
consider that using previous experience and acquired
knowledge the manager can predict, for every scenario
(i.e., in the SDs) the effort required for a project in terms
of man/months. In particular, in the example we

developed, 43, 36, and 39 man/months are foreseen,
respectively, for In-house, COTS and Outsourcing
projects.

Annotated Sequence Diagram

Time
t0
t1

t2
t3

t4

t5

a b c

m1

m2

Execution Graph

(m1, a, b, t1)

(m2, b, c, t4)

Figure 3 Labelled EG Generation

It is important to notice that such values are the
cumulative estimated effort needed to complete all the
scheduled activities.

Integration
Test

Testers

Unit
Test Function

Test

System
Test

Quality Assurance

Risk
Analysis

Verification
&Validation

Contracts
Analysis and
Acceptance

Feasibility
Study

Contract
Evaluation

Development Problem
Analysis and Solution

Manager

Cots
Outsurcing

System
Definition

Analyst & Sw Architect

Test
Planning

Developers

Software
Integration

System
Integration

Software
Coding

System
Design

Design Team

Software
Design

Figure 4: Deployment Diagram

However delays due to meetings, communications,
personnel absences, etc, are not yet considered (they will be
introduced when translating the SDs in the EQNM model).

In Table 1 some numerical results obtained applying
the proposed methodology are shown. In the experiment we
varied the following parameters:

1. the number of people belonging to the various teams in
the DD. We defined the minimum and the maximum
number of people involved in each team.

2. the number of projects that are ongoing at the same
time; in Table 1 we show the results relative to
assuming 1, 3, 9, or 12 projects contemporaneously
under development (as indicated by the first column).

3. the respective frequencies of In-house, COTS or
outsourcing (identified by pi, pc, and po, respectively).
For the cases of 3, 9, or 12 contemporaneous projects,
in Table 1 we show the results obtained for TC
considering that all the projects belong to a same
typology (i.e., pi=1, or pc=1, or po=1), or that projects
typologies are uniformly distributed (pi=pc=po=1/3).
This is indicated by the second column.

In the third, fourth, and fifth column, the mean
completion time TC obtained respectively for In-house,
COTS and Outsourcing is reported: note that it is expressed
in real calendar months, because the specific people
organization and possible delays are now taken into
account. In particular, we report the obtained TC
considering the two extreme situations that all the teams
have the minimum configurations (white rows), or all have
the maximum configurations (grey rows); in practice,
mixed configurations could occur.

As we can observe in the table, as the number of
projects to be carried on in parallel augments, the average
completion time for each project increases considerably,
and this is true independently from the kind of development
(In-house, COTS, Outsourcing) undertaken. For example,
passing from 3 to 9 projects the completion time is more or
less doubled in every situation considered.

This effect is due to the creation of queues and delays
between the teams: in the configurations that we have
hypothesized, some resources, such as the Testers and the
Developers, remain lightly utilized, while others, especially
the Quality Assurance component, are not sufficient. Such
result, i.e., how resources (the teams) are utilized, could
also be obtained by solving the model, and is very useful
for management. The utilization index is measured by the
ratio between the frequency at which requests arrive, and
the frequency at which the processing element (in our case
a team) can deliver services. It varies between 0 and 1,
where 1 means that the resource is saturated, and can
represent a bottleneck. The results, relative to the typology

(pi=1,pc=0,po=0), i.e., In-house, are shown in Table 2.
Again, we report the results obtained for the two cases of
all teams of minimum size (white rows), or all teams
maximum (grey rows).

(notaccept, man(1mm))

(start, 2 meetings, man (3mm), QA(8mm))

(Sysdef, 1meeting, A&SA(7mm)
A&SA (7mm), A&SA(4mm))

(Dep-pla, 1meetings, DT(7mm), DT(7mm))

(Detdes, 4 meetings, Dev(11mm),
Test (9mm) QA (1mm))

(Impl, Man(1mm))

p1.3

p1.1

p1.2

p1.1.1.1

1-p1.1.1.1

p1.1.3
p1.1.1.2

p1.1.2

Figure 5: EG-Instance

A conclusion that can be derived in our experiment is
that the typology of project undertaken does not make a big
difference (at least, under the hypotheses we modelled in
the UML diagrams), while the sizing of the involved teams
is very important. Using our method, we can automatically
predict how the sizing of teams affects the schedule: this
can help to balance the assignment of people to tasks as
more projects are started, or maintenance interventions are
required.

7. Conclusions and Future Work

The contribution of this paper is to show how standard
methods from performance analysis literature can be
usefully employed for personnel management, whereby the
phases of a project are assimilated to the tasks to be
performed, and the teams to the processing elements. We
illustrated a small case study, and showed how the delays
that can accumulate if people are assigned to too many
projects can bring to unacceptable completion times. Above
all, we showed how queueing networks can be usefully
employed for deriving such predictions.

We have used here as the input modelling interface a
set of annotated UML diagrams, thus obtaining a method
that is easily usable by software managers, in view of the
large diffusion of the UML notation.

It is important to notice that the relatively small effort
we require in modelling and formalization produces as a
beneficial side effect a complete graphical documentation
of the software processes in the enterprise, which can be
useful both to the manager and the teams involved. The
UML diagrams describe, in fact, the tasks and roles of each
team and also, in the form of additional annotations, the
times foreseen to complete their tasks.

This makes more visible and documented also the
updates or the reviews of the planned software process
strategies, by which it is possible to identify where, when
and how to operate the possible adjustments. Finally, it also
helps to keep track of project choices, so that it is possible
to evaluate, at any time, whether the adopted methodology,
chosen scenarios or decisions were adequate.

At present, the used methodology had to be applied
manually, but a tool that performs the automatic derivation

of performance models from UML diagrams (according to
the method described in Section 5) is currently under
development. In particular this tool is based on an extension
of the proposed methodology, that we have presented in
[30], which uses as the manager’s interface a subset of
Real-Time UML [31], the recently adopted OMG standard
specialized profile for addressing schedulability,
performance and timeliness.

The application of the RT-UML profile as the input
modelling notation provides in fact the proposed approach
with a standard interface, thus reducing further the effort
required by the managers for learning the methodology.
Therefore, our future vision is that, once a manager has
defined and annotated the RT-UML diagrams, the tool will
automatically carry out the predictions of interest for the
management plan.

... ...

...
...

... ...
Projects

Manager (1-3) Quality Assurance (1-5)

Meeting center
Developers (5-10)

Testers (3-5)

COTS

OUTSOURCING

Design Team (2-4)Analist & SW Architect (2-4)

Figure 6: EQNM Corresponding to DD

We are also working towards modelling diverse
development processes such as the Rational Unified
Process (RUP) [32]. In particular in 0 we present an
application of the methodology aimed at augment RUP
with the capability to produce reliable schedule and
resource utilization estimates of use to decision makers

Future work will also include extending the
considered model to encompass more complex situations:
for example projects with different dimensions and
different priorities, resources with different capabilities
and different specializations within the same team. We
have also planned the validation of the model on real
world industrial case studies.

Table 1

Table 2

References

[1] T. Lister, “Hallucinations at 37,000 Feet”, IEEE
Software, May/June 1998, pp. 105-107.

[2] R. Pooley, “Software Engineering and Performance:
A Roadmap. The Future of Software Engineering”, 22nd ICSE:
Finkelstein A. Ed.

[3] J. Rumbaugh, I. Jacobson, and J. Booch, “The unified
Modeling Language Reference Manual”, Addison Wesley,
1999.

[4] UML 1.3 Documentation Web Site. On-line at
http://www.rational.com/uml/resources/documentation/index.js
ps/

[5] V. Cortellessa, and R. Mirandola, "Deriving a
Queueing Network based Performance Model from UML
Diagrams", in Proc. WOSP2000, Ottawa, Canada, September
2000, pp. 58-70.

Projects (pi,pc,po) TC-ih TC-C TC-O
Min (1,0,0) 42.3

[6] R. Mirandola, and V. Cortellessa, “UML based
Performance Modeling of Distributed Systems”, in Proc.
UML2000, York, UK, October 2000, LNCS 1939, Springer
Verlag, 2000.

[7] V. Krishnan, and K.T. Ulrich, “Product Development
Decisions: A Review of the Literature”, Management Science,
Vol. 47, pp. 1-21, 2001.

[8] R. Smith, “The Historical Roots of Concurrent
Engineering Fundamentals” IEEE Transaction on Engineering
Management, Vol. 43, pp. 67-78, 1997.

[9] K. Imai, L. Nonaka and H. Takeuchi, “Managing the
New Product Development Process: How the Japanese
Companies Learn an Unlearn”, in K. B. Clark, R. H. Hayes, and
C. Lorenz, (eds.) The uneasy Alliance, Boston: Harvard
Business School Press, 1985.

[10] H. Takeuchi and L.I. Nonaka, “The New Product
Development Game”, Harvard Business Review, Vol. 64, pp.
137-146, 1986.

[11] B.V. Dean, “Project Management: Methods and
Studies”, Amsterdam: North-Holland, 1985.

[12] V.G. Kulkarni, and V.G. Adlakha, “Markov and
Morkov-Regenerative PERT Networks” Oper. Res. Vol. 34,
pp.769-781, 1986.

[13] G. Weiss, “Stochastic Bounds on Distribution of
Optimal Value Function with Application to PERT”, Network
Flows and Reliability Oper. Res., Vol. 36, pp. 595-605, 1986.

[14] T. A. Black, C. H Fine, and E. M. Sachs, “A Method
for Systems Design Using Precedence Relationships: An
Application to Automotive Brake Systems”, M.I.T. Sloan
School of Management, Cambridge, MA, Working Paper no.
3208, 1990.

[15] P. S. Adler, A. Mandelbaum, V. Nguyen, and E.
Schwerer, “From Project to Process Management: An
Empirically Based Framework for Analyzing Product
Development Time”, Management Science, Vol. 42, pp. 458-
484, 1995.

[16] C.H. Loch, “Operations Management and
Reengineering”, European Management Journal,Vol.16, pp.
306 – 317, 1998.

[17] R Ramaswamy, “How to staff business critical
maintenance projects”, IEEE Software Vol. 7, pp. 90-95, 2000.

[18] G. Antoniol., G. Casazza., G.A. Di Lucca, M. Di
Penta, and F.A. Rago “Queue Theory-Based Approach to Staff
Software Maintenance Centers”, in proc. of IEEE International
Conference on Software Maintenance, ICSM 2001, Firenze,
Italy, 6-10 November 2001.

[19] T. Browning “Applying the Design Structure Matrix
to System Decomposition and Integration Problems: A Review

Max
1

 12.5
(0,1,0) 30.7
 10.4
(0,0,1) 34.2
 10.9
(1,0,0) 59.9 3

 17.7 0
(0,1,0) 53.7
 15.5
(0,0,1) 58.7
 16.9
(1/3,1/3,1/3) 58.1 53.7 55.3
 17.4 15.6 15.6
(1,0,0) 103.5 9
 32.5
(0,1,0) 95.4
 27.4
(0,0,1) 106.2
 31.6
(1/3,1/3,1/3) 95.4 103.5 102.6
 30.9 29.2 28.1
(1,0,0) 133.2 12
 35.7
(0,1,0) 122.4
 28.9
(0,0,1) 131.4
 34.9
(1/3,1/3,1/3) 115.9 127.5 127.5
 32.8 29.1 31

Max
1

0.03 0.03 0.08 0.05 0.14 0.04
0.23 0.46 0.42 0.26 0.13 0.25 3
0.09 0.1 0.26 0.15 0.07 0.012
0.41 0.81 0.77 0.47 0.23 0.47 9
0.25 0.30 0.70 0.41 0.20 0.34
0.43 0.89 0.81 0.48 0.24 0.49 12

 0.30 0.36 0.84 0.51 0.25 0.40

Projects Manager QA A&SA DT Developer Tester
Min 0.09 0.17 0.17 0.10 0.05 0.1

http://www.rational.com/uml/resources/documentation/index.jsps/
http://www.rational.com/uml/resources/documentation/index.jsps/

and New Direction”, IEEE Transaction on Engineering
Management, Vol. 48, pp. 292-306, 2001.

[20] Microsoft Project tool . On line at
http://www.microsoft.com/office/project/

[21] Kerzner Project Management Maturity Online
Assessment tool. On line at
http://www.iil.com/brochures/kerzner.htm

[22] M. Dickinson, A.C. Thornton, and S. Graves
“Technology Portfolio Management: Optimizing Interdependent
Projects over Multiple Time Periods”, IEEE Transaction on
Engineering Management, Vol. 48, pp. 518-527, 2001.

[23] S .Bori, J. Lores , R. Pascual, and E. Roures
“PROMAN, Planning Production Management and Control
System with Intelligent Interface and Advanced Forecast”, In
Proc. of ETFA 2001, 8-th IEEE International Conference on
Emerging technologies and Factory Automation, Antibes,
France, 15-18 October 2001.

[24] C. Lindemann, “Performance Modelling with
Deterministic and Stochastic Petri Nets”, John Wiley & Sons,
1998.

[25] U. Herzog, and J. Rolia, “Performance Validation
Tools for Software/hardware Systems”, Performance
Evaluation, July 2001.

[26] C.U. Smith, “Performance Engineering of Software
Systems”, Reading, MA: Addison-Wesley, 1990.

[27] S.S. Lavenberg “Computer Performance Modeling
Handbook”, New York: Academic Press,1983.

[28] ISO/IEC 12207: Information Technology – Software
Life Cycle Process, 1995.

[29] L.H. Putnam, and W. Mayers “Measures for
Excellence: Reliable Software on Time within Budget”,
Englewood Cliffs, New Jersey; Yourdon Press Computing
Series, 1992.

[30] A. Bertolino, E. Marchetti, and R. Mirandola "Real-
Time UML-based Performance Engineering to Aid Manager's
Decisions in Multi-project Planning", in Proc. Third
International Workshop on Software and Performance WOSP
2002, Rome, Italy, July 24-26, 2002.

[31] B. Selic, “Response to the OMG RFP for
Schedulability, Performance and Time”, OMG document
Ad/2001-06-14.

[32] Rational Unified Process. On line at
http://www.rational.com/products/rup/index.jsp

[33] A. Bertolino, G. Lombardi, E. Marchetti, and R.
Mirandola "Software Performance Measures to Assist Decision
Makers within the Rational Unified Process", in Proc. 12th
International Workshop on Software Measurement IWSM 2002,
Magdeburg, Germany, October 7-9, 2002.

Francesca Basanieri graduated in
Computer Science at the University of
Pisa. Since 2000, she has been a Grant
owner with the Information of Science
and Technology Institute of the Italian
National Research Council (CNR), in
Pisa. She works in Pisatel Laboratory
where she is involved in the development
of CowSuite tool, to provide an integrated
and practical approach to strategic
generation and planning of UML-based
test suites. Her research interests are in

software testing, object-oriented analysis and design. She works with
the most spread UML tools (Rational Rose, Rose RT, Argo UML). She
is interested in the usage of Queueing Networks theory for automatic
management of teams and tasks in software multiprojects. She has
(co)authored 10 papers in international conferences.

Antonia Bertolino is a researcher with
the Italian National Research Council
(CNR) in Pisa, Italy, where she leads the
SE group and the Pisatel Laboratory. Her
research interests are in software testing
and dependability and she investigates
cost-effective approaches for architecture
and UML-based testing. She is an
Associate Editor of the Journal of Systems
and Software and IEEE Trans. on Software
Engineering. She has been the General
Chair of ACM ISSTA 2002 (Rome) and a

member of the Program Committees of ISSTA, ESEC-FSE, ICSE,
SEKE, Safecomp, and Quality Week. She has served as the Knowledge
Area Specialist for Software Testing in the ACM/IEEE Guide to the
SWEBOK project. She has (co)authored more than 50 papers in
international journals and conferences.

Eda Marchetti graduated cum laude in
Computer Science at the University of Pisa
in December 1997. She is a PhD Student in
Computer Science at the University of
Pisa, Italy. Since 1998, she works with
Information of Science and Technology
Institute "A. Faedo" (ISTI) of the Italian
National Research Council (CNR), in Pisa.
Her research interests are in software
engineering and, in particular software
testing, reliability evaluation, application
and development of statistical methods and

cost weighed strategies to the software test process, use of UML and
Queueing Networks for automatic management of teams and tasks in
software multiprojects. She has (co)authored more than 15 papers in
international journals and conferences.

 Raffaela Mirandola received the
Laurea degree in Computer Science from
the University of Pisa, Italy, in 1989 and
the Ph.D. degree in Computer Science
from the University of Rome TorVergata,
Italy, in 1994. Currently, she holds an
Assistant Professor position at University
of Rome TorVergata, Italy. Her research
interests include software performance
engineering, performance and reliability
model generation, model analysis

techniques, software reliability analysis through statistical techniques,
development of methods and tools that can be used to manage the
performance and/or the reliability of software throughout the lifecycle.
She has(co)authored more than 30 papers in international journals and
conferences.

http://www.microsoft.com/office/project/
http://www.iil.com/brochures/kerzner.htm
http://www.rational.com/products/rup/index.jsp

