
Automating the Management of Teams and Tasks in Software
Multiprojects Using UML and Queueing Networks

Francesca Basanieri
Antonia Bertolino

Eda Marchetti
IEI, CNR, Pisa, Italy

f.basanieri@iei.pi.cnr.it
bertolino@iei.pi.cnr.it

e.marchetti@iei.pi.cnr.it

Raffaela Mirandola
Dip. Informatica, Sistemi e

Produzione
Università di Roma,

TorVergata,Roma, Italy
mirandola@info.uniroma2.it

Abstract
We propose to apply classical performance

engineering models for the purposes of personnel
management and project scheduling in a
multiproject software development environment.
The basic idea we draw on is that project teams
correspond to the processing elements of a
performance model, and project intermediate
phases to the tasks to be performed within
established time intervals; the tasks and the teams
involved are modeled by annotated UML
diagrams. A tool transforms such diagrams into
queueing network models, solving which the
predicted completion times for the modeled
processes can be automatically obtained. The
methods takes into account people multitasking
on several contemporaneous projects, as well as
delays and inefficiencies due to meetings,
communications, and personnel overutilization.

1. Introduction

Notwithstanding the emergence of new

software technologies and paradigms, personnel
management and project planning still remain two
very critical pieces of the software process
puzzle. In this respect, managers have to face
today even more difficult problems than in the
past, because modern projects tend to increase in
size and complexity, while the time-to-market
continuously shrinks down to almost unfeasible
limits.

To keep the development activities under
control and make realistic plans, managers need
to dynamically consider the workloads of the
involved human resources and take the most
appropriate decisions for meeting the project
deadlines. To support their decisions, in this
paper we propose to borrow from the field of

computer performance engineering well-known
techniques, such as queueing networks models.
We follow the metaphor that project teams
correspond to the processing elements in
performance models, and project intermediate
phases are the tasks to be performed within
established time intervals. Accordingly to this
metaphor, we adapt performance analysis
methods to the purpose of handling personnel
multitasking and of optimizing workloads in
software project management. The advantage is
that performance engineering is a mature field,
for which rigorous analysis methods and tools
have been developed.

The input requirements to our approach are
close to those of existing project management
tools, i.e., the manager needs to derive a model of
the development process and to make some
quantitative estimations, such as the number and
the roles of the people involved, the time
necessary for completing the different process
phases, the resources available and so on.

The peculiarity of our approach is to model the
involved activities by using the UML notation,
which is becoming the standard notation for
analysis, design and implementation of object
oriented systems [14], [16]. The approach we
propose is easily applicable with few additional
effort or cost for the software realities already
accustomed to UML use.

In this paper we illustrate the method on a case
study. This is an example reflecting a specific
software development environment. The referred
process is kind-of waterfall life cycle, organized
in three main phases: analysis stage, functional
design and main build.

Considering the UML notation, we represent
in a Use Case Diagram the activities planned for
development. By means of the Sequence Diagram
we represent one of the possible scenarios for a
related Use Case; in particular, the objects in a

Sequence Diagram represent the different process
steps involved. Finally, using a Deployment
Diagram, we associate a node with a team, and
the components inside a node with the tasks
assigned to that team.

Using these diagrams and the proposed
methodology, we show the type of results that can
be obtained. In general in order to choose the
most convenient solution, managers need to make
a trade-off between the foreseen time of
completion (TC) and the amount of resources
(NR) used. In the case study considered we
introduce also a third factor: the cost of software
acquisition (CS). Therefore, the manager's
decision will be actually a function of these three
factors, i.e., f(TC, NR, CS). We make predictions
for the three different factors under various
situations. For example we demonstrate how the
delays that can accumulate if people are assigned
to too many projects can bring to unacceptable
completion times.

The paper is structured as follows. In the next
section, we provide a brief review of related
work. In Section 3, we give some basic concepts
used in our method, and in Section 4 outline the
case study on which the method is experimented.
Then, in Section 5, we describe the method, step
by step. In Section 6, we illustrate some results.
We finally outline conclusions and future work.

2. A Brief Literature Survey

A voluminous literature about project

management can be found in the last years, but
little part of it treats the problem of activities
planning and people multitasking on several
contemporaneous projects. We report here a brief
survey of previous related studies (we refer to [8]
for a more complete review) and of management
decision support tools.

Two crucial aspects of software project
management are resources distribution and
activity planning during development.

 PERT (Project Evaluation and Review
Technique) and CPM (Critical Path Methods) [4]
are probably the first proposed methods to handle
the distribution of resources in a multiproject
environment. They describe an idealized flow of
project activities, in which no new project is
introduced over time and activity times are
treated as deterministic. Personnel organization
and resources distribution among several projects
developed at the same time is instead the problem
studied by Adler et al. [1]. These authors use
queueing networks and stochastic processing
network models to represent product development
and to identify which are the bottlenecks in task
scheduling.

The decisional support managers can rely on is
generally of two kinds. One consists of traditional
techniques, like Control Charts or Gannt Charts
[2], that visualize resources and personnel and
distribute them among the phases of project
development. GUI tools oftentimes support these
methods, which are extremely intuitive, but
generally the validity of the plans depends strictly
on the subjective skill of the managers. Besides,
the use of these techniques in a multiproject
context could be rather difficult.

The second kind of decisional support consists
of specialized tools for managers, like Microsoft
Project tool [11], or the Kerzner Project
Management Maturity Online Assessment tool
[7]. These provide a valid help for maintaining an
updated database of the available people and
resources, and for producing and visualizing a
project plan. However, such tools consider only a
specific aspect of management, focusing for
example either on the completion time or on the
personnel distribution and, more importantly,
they cannot explicitly manage several
contemporaneous projects. Finally, the majority
of available tools apply ad hoc algorithms for
simulating the project evolution, based on some
parameters values introduced by the user. Some
of those tools generate approximate predictions
without any guarantee of statistical significance.

3. Performance Concepts Used

To make the paper self-contained, in this

section we outline some basic performance
concepts. In particular, we use here the queueing
networks models, which are the largest
widespread method in performance field. Anyway
the results presented could be obtained via the
application of other used approaches, like Petri
nets [10], LQN or process algebras [5], simply by
applying appropriate transformation rules from
the UML diagrams to these notations.

Our method is based on the Software
Performance Engineering (SPE) approach [15].
The SPE basic concept is the separation of the
software model (SM) from its execution
environment model (i.e., hardware platform
model or machinery model, MM).

The SM captures the essential aspects of
software behavior; we represent it by means of
Execution Graphs (EG). An EG is a graph whose
nodes represent software workload components
and whose edges represent transfer of control. A
software workload component can be a single
instruction or a whole procedure, depending on
the granularity adopted for the model [15]; this
feature makes EGs suitable for modeling software
at different levels of detail.

EGs include several types of nodes (or blocks),
such as basic, cycle, conditional, fork and join
nodes. Each node is weighted by use of a demand
vector that represents the resource usage of the
node (i.e., the demand for each resource).

The MM models the hardware platform and is
based on the Extended Queueing Network Model
(EQNM) [9]. To specify an EQNM, we need to
define: the components (i.e., service centers), the
topology (i.e., the connections among centers)
and some relevant parameters (such as job
classes, job routing among centers, scheduling
discipline at service centers, service demand at
service centers). Component and topology
specification is performed according to the
system description, while parameters
specification is obtained from information
derived by EGs and from knowledge of resource
capabilities. Once the EQNM is completely
specified, it can be analysed by use of classical
solution techniques (simulation, analytical
technique, hybrid simulation [9]) to obtain
performance indices such as the mean network
response time or the utilization index (see Section
5).

4. Case Study

The case study that we consider in this paper is

an example reflecting a hypothetical (yet realistic,
we referred to [6], [13] for its conception)
software development environment and the roles
of involved people. The software process life
cycle used is a sort of waterfall life cycle
organized in three main phases: analysis stage,
functional design and main build.

The analysis stage begins with the description
of customer needs. A contract is then drafted and
iteratively updated following the changes
suggested by the customer and taking into
account the constraints imposed by project plans,
costs, schedule and risks analysis. At this stage,
possible alternatives to internal code
development, such as the use of COTS or
Outsourcing are considered. This part ends with
the decision between contract acceptance or
rejection.

In the case of contract acceptance, analysts and
software architects start a project plan, by which
they examine and complete requirements and
specifications and start defining test plans. After
this, the functional design phase starts. Here,
system and software architectural designs are
prepared. Therefore, a top level system
architecture, identifying hardware/software
components and operator’s tasks, is established,
as well as its quality characteristics, like

performance, environmental conditions,
interfaces and security requirements.

At the end of this phase, the software detailed
design is transferred to the main build phase. The
developers, following the indications of this
document, produce the related code and establish
test procedures and test cases. In the main build
phase, several critical activities may induce
delays in project completion or additional costs.
For example, problems relative to components
integration, or unexpected faults discovered in
testing. Their resolution generally requires the
manager’s intervention.

Each phase described above will be carried on
with the support of different teams. In the case
study we assumed six teams, representing
different working groups that may be involved in
the development of different projects going on
contemporaneously. These teams are identified
as: managers, who lead the organization and
control activities; quality assurance team, who is
responsible of contract analysis and acceptance as
well as risk analysis and quality evaluation; the
analyst and software architect team, who specifies
system requirements, the high level design and
test plans; the design team, who realizes software
and system detailed designs; the development
team, who generates code, realizes and integrates
system and software components; and finally
testers team, who specifies and executes test
cases.

The people belonging to a certain team can
vary depending on the project exigencies and the
number of projects developed at the same time.
The latter factor is very important also for
predicting the completion time of a project. We
will discuss further on this in Section 6.

5. Description of the Methodology

A method to derive a performance model from

annotated UML diagrams has been proposed by
one of the authors in [2]. The contribution of this
paper is the proposal to use that method in a
different context, that is for project management.
This required us to re-interpret that method in this
new application field, for instance by assigning a
suitable meaning to the objects involved in the
UML diagrams. However, once this was done, the
method itself could be applied virtually
unmodified. Indeed, it was really a nice surprise
even for ourselves to see how well the method fits
to its usage in this new context, and how well our
metaphor of project steps=computing tasks, and
processing elements=project teams works out.

Let us illustrate the basic steps of the method,
tailored to this new applicative context [2], [12]:

1) Functionalities description: we describe in the
UCDs, through the UseCases, all the
functionalities corresponding to project choices or
possible real situations occurring during the
software product development. In our case study,
the UCD actor (a possible user that interacts with
the system through information interchange) is
represented by one manager (see Fig. 1).
2) Deduce from the UCDs the User Profile: we
annotate the arcs in the UCD with the respective
frequencies with which the specific activities that
descend from each node are expected to occur.
Figure 1 gives an example in which every
UseCase at the highest level represents the main
manager’s activities.

The manager deals with several problems with
different frequencies. The parametric values, p1,
..., p4, associated with the edges outgoing from
the actor "manager" represent the respective
portion of working time that the manager
dedicates to each of the activities modeled. Every
of these high level activities can then be detailed
into other, more refined, sub-Use Cases. Also in
this case, we specify the frequency of every
single scenario. Note that the sum of frequencies
of the UseCases associated with a single actor or
node must be equal to 1.
3) For each Use Case in the UCD, generate the
corresponding scenarios, and for each scenario

the corresponding SDs: at the end of UseCase
modelling, the SDs are derived, each of them
representing one of several possible scenarios for
the related UseCase. The occurrence frequency of
a SD scenario is given by the product of all the
values associated to the edges along the path from
the actor to this SD. We require the manager to
annotate each SD with foreseen times. As we
show in Figure 2, the sequence of time
annotations in each SD simply represents the
planned effort for each step in man/months. Each
interaction in the SDs can be identified by the
tuple (l,A1,A2, t), where l is the label of the SD
interaction arrow, A1 is the name of the SD axis
where the arrow starts, and A2 is the name of the
SD axis where the arrow ends and t the
interaction occurrence time (these labels are used
in step 4 below).
4) Process the set of Sequence Diagrams (SDs)
to obtain the meta-EG: on the SDs, the algorithm
presented in [2] can now be applied, that
translates all the SDs into a high level EG (called
meta-EG). Each node in the EG identifies an
interaction, and corresponds to the set of
operations performed in relation to that
interaction. Every node in the meta-EG is labeled
with the tuple (l,A1,A2,t) that characterizes the
translated interaction.

In-house Software
Development

Personnel organization Maintenance

COTS useDelay in COTS availability

Standard development using
Outsourcing

Delay in Outsourcing product

Collaboration failure

Accepted

NotAccepted

In MainBuild

In Functional Design

In Feasibility Study

......

Manager
p2

p3

p4

COTS

p1.2.1
p1.2.2

Outsourcing

p1.3.1
p1....

p1.3.3

Standard development
p1.1.1.2

p1.1.1.1

Problematic development

p1.1.3.1

p1.1.3.2

p1.1.3.3

p1.1.3.4

New product development

p1

p1.2
p1.3

InHouseWithOutsourcing

p1.1.1 p1.1.3

p1.1

p1.1.2

Figure 1: Use Case Diagram
5) Tailor the meta-EG to the DD, thus

obtaining an EG-instance: the information
contained in the DD is used to better specify the
obtained software model, the meta-EG, so that it
also takes into account its execution environment;
the EG thus obtained is called an EG-instance. A
node in the DD here is not a hardware resource,

but a team. The components inside a node
represent the tasks that the people belonging to a
team have to perform (obviously, a team can be
composed by one or more people). Project phases
can be executed with the collaboration of
components living inside different nodes of the
DD. Specifically, we substitute the names of the

interacting components within the meta-EG block
labels with the names of the specific team that
accomplishes the operation and the required time
(see the next section for an example).
Furthermore, when in the label the names of the
interacting components are different, an overhead
delay due to communications among project

teams (e.g., team meeting) is added into the
performance model.

Figure 5 shows the obtained EG-instance for
the SDs illustrating the In-house scenarios
standard development: “accepted” and “not
accepted” (the others SDs are sketched with
dotted lines).

 : M a n a g e r

 : A n a l y s i s

s t a g e

 : F u n c t i o n a l
D e s i g n

 : M a i n
B u i l d

1 . S t a r t F e a s i b i l i t y S t u d y ()

1 . 1 . P ro p o sa l D e v e l o p m e n t ()

1 . 2 . C o n t r a c t p r e p a ra t i o n a n d u p d a t e ()

1 . 3 . R i s k m a n a g e m e n t P l a n ()

2 . S y s t e m d e f i n i t i o n ()

2 . 1 . P ro j e c t P l a n s ()

2 . 2 . R e q u i re m e n t s ()

2 . 3 . S p e c i f i c a t i o n s ()

2 . 4 . T e s t P l a n n i n g ()

1 . 4 . A c c e p t a n c e e c o m p l e t i o n ()

3 . D e p l o y m e n t P l a n n i n g ()
3 . 1 . S y s t e m a rc h i t e c t u ra l d e s i g n ()

3 . 2 . S o f t w a r e re q u i r e m e n t s a n a l y s i s ()

3 . 3 . S o f t w a r e a rc h i t e c t u ra l d e s i g n ()

4 . S o f t w a re d e t a i l e d d e s i g n ()

4 . 1 . S o f t w a r e c o d i n g & t e s t i n g ()

4 . 2 . S o f t w a r e i n t e g r a t i o n ()

4 . 3 . S o f tw a r e q u a l i f i c a t i o n te s t i n g ()

4 . 4 . S y s t e m i n t e g r a t i o n ()

4 . 5 . S y s t e m q u a l i f i c a t i o n t e s t i n g ()

5 . P r o c e s s i m p l e m e n t a t i o n ()

4 . 1 . 1 . U n e x p e c t e d T e s t P ro b l e m s ()

4 . 1 . 2 . T e s t p r o b l e m s re s o l u t i o n ()

4 . 4 . 1 . U n e x p e c t e d i n t e g r a t i o n p r o b le m s ()

4 . 4 . 2 . S y s t e m i n t e g ra t i o n p ro b l e m s re s o l u t i o n ()

 T i m e

- - - - - - - - - t 1

- - - - - - - - - t 2

- - - - - - - - - t 3

- - - - - - - - - t 4

- - - - - - - - - t 5

- - - - - - - - - t 6

- - - - - - - - - t 7

- - - - - - - - - t 8

- - - - - - - - - t 9

- - - - - - - - - t 1 0

- - - - - - - - - t 1 1

- - - - - - - - - t 1 2

- - - - - - - - - t 1 3

- - - - - - - - - t 1 4

- - - - - - - - - t 1 5

- - - - - - - - - t 1 6

- - - - - - - - - t 1 7

- - - - - - - - - t 1 8

- - - - - - - - - t 1 9

- - - - - - - - - t 2 0

- - - - - - - - - t 2 1

- - - - - - - - - t 2 2

- - - - - - - - - t 2 3

- - - - - - - - - t 2 4

- - - - - - - - - t 2 5

- - - - - - - - - t 2 6

- - - - - - - - - t 2 7

- - - - - - - - - t 2 8

- - - - - - - - - t 2 9

- - - - - - - - - t 3 0

- - - - - - - - - t 3 1

- - - - - - - - - t 3 2

Figure 2: Software development SD with problem in Main Build phase

6) Use the DD to obtain the Extended Queueing
Network Model (EQNM) of the project teams:
the EQNM topology can be derived in a
straightforward way from the DD. As already
stated, in our case the service centers model the
project teams involved in the software processes,
so the number of service centers in the network
correspond to the number of teams. The
connections between different service centers are
derived from the communications represented in
the DD.

In Figure 6 the EQNM corresponding to the
DD of Figure 4 is shown. The center “Projects”
represent the number of projects that are carried

on simultaneously. The remaining service centers
are labeled with the name of the corresponding
teams, with a pair of numbers representing the
minimum and maximum values of people in the
team. Each center is modeled by a multiple
server, where the number of active servers
corresponds to the actual number of people in the
team. The communication delay among teams
(e.g., meetings, exchange of documents, ...) has
been modeled by a service center called Meeting.
7) Combine the EG-instance and the EQNM to
derive a complete performance model, and solve
the model: finally, by use of well known
techniques [15], the EG-instance obtained in Step

5 can be combined with the EQNM defined in
Step 6 to achieve the complete definition of the
queueing model, precisely as in the classical SPE
approach. The obtained model can now be solved
by use of classical solution technique and tools
[9] to obtain the performance indices of interest.
We show some examples in the following section.

6. An Example and Preliminary
Results

We experimented the proposed methodology on
the case study outlined in Section 4; due to space
limitation, in this section we only illustrate the
results relative to applying and solving the model
to the Use Case "New product development".
With reference to Figure 1, this corresponds to
putting in the UCD p1=1, and all the remaining
occurrences p2, p3, ... = 0.
For this case several decisions need to be taken
by the manager: developing the product using
only the internal resources (In-house software
development); integrating COTS software for
some functionalities; delegating part of product
development to another developer (Outsourcing).
Each of the three cases, in turn, has been further
refined into more sub-cases (Figure 1), requiring
finer manager’s decisions. We have developed a
set of SDs elaborating the scenarios
corresponding to the identified sub-Use Cases.

Figure 3 Labeled EG generation
Finally, we constructed the already shown DD

(Figure 4). On the developed UML diagrams, we
applied the method described in the previous
section, and we now show the type of results that
could be obtained. In general, in order to choose
the most convenient solution, managers need to
make a trade-off between the foreseen time of
completion (TC) and the amount of resources
(NR) used. For example, a short completion time,
but obtained with a too high employment (waste)
of resources is certainly not a good choice.
Another important factor to consider for the cases
of COTS or Outsourcing could also be the cost of
software acquisition (CS).

Therefore, the manager's decision will be
actually a function of these three factors, i.e.,
f(TC, NR, CS). In our method we make

predictions for the factor TC under various
situations. We took the following assumptions:
A1: all the projects of the same type (i.e., In-
house, or COTS, or Outsourcing) take the same
number of man/months;
A2: the frequencies of problematic scenarios are
null, i.e., in practice we reduce here the analysis
only to the three main scenarios of successful In-
house, COTS and Outsourcing projects.

Clearly, such assumptions might see too
restrictive, and indeed they are. But they are not
required at all to apply the model, we only
introduced them to make the analysis simpler.

With reference to assumption A1, in general
we consider that using previous experience and
acquired knowledge the manager can predict, for
every scenario (i.e., in the SDs) the effort
required for a project in terms of man/months. In
particular, in the example we developed, 43, 36,
and 39 man/months are foreseen, respectively, for
In-house, COTS and Outsourcing projects.

It is important to notice that such values are
the cumulative estimated effort needed to
complete all the scheduled activities. However
delays due to meetings, communications,
personnel absences, etc, are not yet considered
(they will be introduced when translating the SDs
in the EQNM model). In Table 1 some numerical
results obtained applying the proposed
methodology are shown. In the experiment we
varied the following parameters:

Figure 4: Deployment Diagram
1. the number of people belonging to the
various teams in the DD. We defined the
minimum and the maximum number of people
involved in each team.

Figure 5: EG-instance
2. the number of projects that are ongoing at the
same time; in Table 1 we will show the results
relative to assuming 1, 3, 9, or 12 projects
contemporaneously under development (as
indicated by the first column).
3. the respective frequencies of In-house, COTS
or outsourcing (identified by pi, pc, and po,
respectively). For the cases of 3, 9, or 12
contemporaneous projects, in Table 1 we show
the results obtained for TC considering that all the
projects belong to a same typology (i.e., pi=1, or
pc=1, or po=1), or that projects typologies are
uniformly distributed (pi=pc=po=1/3). This is
indicated by the second column.
In the third, fourth, and fifth column, the mean
completion time TC obtained respectively for In-
house, COTS and Outsourcing is reported: note
that it is expressed in real calendar months,
because the specific people organization and
possible delays are now taken into account.

In particular, we report the obtained TC
considering the two extreme situations that all the
teams have the minimum configurations (white
rows), or all have the maximum configurations
(grey rows); in practice, mixed configurations
could occur.

As we can observe in the table, as the number
of projects to be carried on in parallel augments,
the average completion time for each project
increases considerably, and this is true
independently from the kind of development (In-
house, COTS, Outsourcing) undertaken. For
example, passing from 3 to 9 projects the
completion time is more or less doubled in every
situation considered.

This is due to the creation of queues and
delays between the teams: in the configurations
that we have hypothesized, some resources, such
as the Testers and the Developers, remain lightly
utilized, while others, especially the Quality
Assurance component, are not sufficient. Such
result, i.e., how resources (the teams) are utilized,
could also be obtained by solving the model, and
is very useful for management.

A conclusion that can be derived for our
experiment is that the typology of project
undertaken does not make a big difference (of
course under the hypotheses we modeled in the
UML diagrams), while the sizing of the involved
teams is very important.

Using our method, the consequences on the
schedule from the sizing of teams can be
predicted: this can help to balance the assignment
of people to tasks as more projects are started, or
maintenance interventions are required.

7. Conclusions and Future Work

The contribution of this paper is to show how

standard methods from performance analysis
literature can be usefully employed for personnel
management, where the phases of a project are
assimilated to the tasks to be performed, and the
teams to the processing elements. We illustrated a
small case study, and showed how the delays that
can accumulate if people are assigned to too
many projects can bring to unacceptable
completion times. Above all, we showed how
queueing networks can be usefully employed for
observing such predictions.

Future work will extend the considered model
to include also more general cases, for instance
with different values for pi, pc and po. The model
will also be further extended to include more
complex situations: for example projects with
different dimensions and different priorities,
resources with different capabilities and with
different specialization within the same team. Of
course, we have also planned the validation of the
model on real world industrial case studies.

It is important to notice that the little effort we
require in formalization produces as a beneficial
side effect a complete documentation of the
software processes in the enterprise, that can be
useful both for the manager and the teams
involved. The UML diagrams describe, in fact,
the tasks and roles of each team and also, in the
form of additional annotations, the time foreseen
to complete their work.

This makes more visible and documented also
the updates or the reviews of the planned software
process strategies, because it is possible to
identify where, when and how to operate the

modifications. Finally, it also helps to keep track
of project choices, so that it is possible to
evaluate, at any time, if the adopted methodology,
chosen scenarios or decisions were adequate.

At present, the used methodology had to be
manually applied, but a tool that performs the
automatic derivation of performance model from

UML diagrams (according to the method
described in Section 5) is currently under
development. Therefore, our future vision is that,
once a manager has defined the annotated UML
diagrams, the tool will automatically carry out the
predictions of interest for the management plan.

Figure 6: EQNM corresponding to DD

Table 1: Results for the foreseen time to
completion

Table 2: Results for the utilization of
resources

Projects Manager QA A&SA DT Developer Tester
Min 0.09 0.17 0.17 0.10 0.05 0.1
Max

1
0.03 0.03 0.08 0.05 0.14 0.04
0.23 0.46 0.42 0.26 0.13 0.25 3
0.09 0.1 0.26 0.15 0.07 0.012
0.41 0.81 0.77 0.47 0.23 0.47 9
0.25 0.30 0.70 0.41 0.20 0.34
0.43 0.89 0.81 0.48 0.24 0.49 12

 0.30 0.36 0.84 0.51 0.25 0.40

References
[1] P. S. Adler, A. Mandelbaum, V. Nguyen, and E.
Schwerer, “From Project to Process Management: An
Empirically Based Framework for Analyzing Product
Development Time”, Management Science, Vol. 42,
1995, pp. 458-484.

[2] A. Burr, and M. Owen, Statistical Method for
Software Quality: Using Metrics for Process
Improvement. Int. Thomson Computer Press, 1996.
[3] V. Cortellessa, and R. Mirandola, "Deriving a
Queueing Network based Performance Model from
UML Diagrams" WOSP2000, Ottawa Canada,
September 2000, pp. 58-70.
[4] B.V. Dean, Project Management: Methods and
Studies, North-Holland, Amsterdam, 1985.
[5] U. Herzog, and J. Rolia, “Performance Validation
Tools for Software/hardware Systems”, Performance
Evaluation, July 2001.
[6] ISO/IEC 12207: Information Technology –
Software Life Cycle Process, 1995.
[7] http://www.iil.com/brochures/kerzner.htm
[8] V. Krishnan, K.T. Ulrich, “Product Development
Decisions :A Review of the Literature” Management
Science, Vol. 47, 2001, pp. 1-21
[9] S.S. Lavenberg Computer Performance Modeling
Handbook, New York, Academic Press,1983.
[10] C. Lindemann, Performance Modelling with
Deterministic and Stochastic Petri Nets, John Wiley &
Sons, 1998.
[11] http://www.microsoft.com/office/project/
[12] R. Mirandola, and V. Cortellessa, “UML based
Performance Modeling of Distributed Systems”
UML2000, LNCS 1939, Springer Verlag, 2000.
[13] L.H. Putnam, and W. Mayers Measures for
Excellence: Reliable Software on Time within Budget,
Yourdon Press Computing Series, Englewood Cliffs,
New Jersey, 1992.
[14] J. Rumbaugh, I. Jacobson, J. Booch, The Unified
Modeling Language Reference Manual, Addison
Wesley, 1999.
[15] Smith, C.U. Performance Engineering of Software
Systems. Addison-Wesley, Reading, MA, 1990.
[16] UML 1.3 Documentation Web Site. On-line at
http://www.rational.com/uml/resources/documentation/
index.jsps/

Projects (pi,pc,po) TC-ih TC-C TC-O
Min (1,0,0) 42.3
Max

1
 12.5
(0,1,0) 30.7
 10.4
(0,0,1) 34.2
 10.9
(1,0,0) 59.9 3

 17.7 0
(0,1,0) 53.7
 15.5
(0,0,1) 58.7
 16.9
(1/3,1/3,1/3) 58.1 53.7 55.3
 17.4 15.6 15.6
(1,0,0) 103.5 9
 32.5
(0,1,0) 95.4
 27.4
(0,0,1) 106.2
 31.6
(1/3,1/3,1/3) 95.4 103.5 102.6
 30.9 29.2 28.1
(1,0,0) 133.2 12
 35.7
(0,1,0) 122.4
 28.9
(0,0,1) 131.4
 34.9
(1/3,1/3,1/3) 115.9 127.5 127.5
 32.8 29.1 31

