
J.-M. Jézéquel, H. Hussmann, S. Cook (Eds.): UML 2002, LNCS 2460, pp. 383-397, 2002.
 Springer-Verlag Berlin Heidelberg 2002

The Cow_Suite Approach to Planning
and Deriving Test Suites in UML Projects

Francesca Basanieri, Antonia Bertolino, and Eda Marchetti

Istituto di Elaborazione della Informazione, CNR
Area della Ricerca di Pisa

56100 Pisa, Italy
{f.basanieri,bertolino,e.marchetti}@iei.pi.cnr.it

Abstract. Cow_Suite provides an integrated and practical approach to
the strategic generation and planning of UML-based test suites, since
the early stages of system analysis and modeling. It consists of two
original components working in combination: the Cowtest strategy,
which organizes the testing process and helps the manager to select
among the many potential test cases, and the UIT method, which
performs the automated generation of test cases from the UML
diagrams. The approach can be used in incremental way, starting from
the preliminary (even incomplete) UML diagrams, and is applied to
integration subsystems, as interactively selected by the tester. The
emphasis is on usability, in that we use exactly the same UML diagrams
developed for analysis and design, without requiring any additional
formalism or ad-hoc effort specifically for testing purposes. Cow_Suite
has been implemented in a prototype tool, and is currently being
validated in an industrial development environment.

1 Introduction

Our research addresses the testing of large, industrial software systems modeled by
the UML. The objective of our investigation is to establish an integrated, practical
and tool-supported approach for the strategic generation and planning of UML-based
test suites, starting since the early stages of system analysis and modeling.

To this end, we have developed a methodology and a prototype tool, called
Cow_Suite, for COWtest pluS UIT Environment. As the name implies, the
methodology implemented by Cow_Suite combines two original components: a
method to derive the test cases, called UIT (Use Interaction Test), and a strategy for
test prioritization and selection, called Cowtest (Cost Weighted Test Strategy). These
two components work in agreement, as Cowtest helps decide which and how many
test cases should be planned from within the universe of test cases that UIT could
derive for the system under consideration. UIT automatically generates test suites for
the high-level test stages, encompassing system and integration testing at various
levels. Each generated test suite focuses on a functional portion of the system as

384 Francesca Basanieri et al.

interactively selected by the tester on a structure of the UML diagrams suitably
organized by Cowtest.

Several authors have recently addressed the problem of UML-based testing (as
overviewed in Section 4), thus the question naturally arises of which the novel and
interesting features of Cow_Suite are with regard to existing methods. Our answer is
that the originality of Cow_Suite stems from its emphasis on:
• usability: where other methods require to augment the UML specifications with

specific annotations to facilitate the test derivation, or to translate the UML
diagrams into an intermediate notation that the methods can process, the leading
principle of the Cow_Suite approach is to use for test planning exactly the same
UML diagrams developed for analysis and design, without requiring any
additional formalism or ad-hoc effort specifically for testing purposes. Usability
to us means that it is the test methodology that, as far as possible, adapts itself to
the modeling notations and procedures in use, and not the vice versa

• timeliness: according to the good software engineering principle that test
planning should start as early as possible in the development cycle, a restricted
set of minimal preconditions is assumed to start applying Cow_Suite (see Section
2.1). Typically in the early design phases not all relevant scenarios are yet
specified and the UML diagrams are defined at a high abstraction level, with
several of them yet sketchy. While other methods require a complete and quite
detailed set of UML diagrams, Cow_Suite can already start outlining a test plan
even at these early stages. Of course the plan will be as abstract as the processed
diagrams are and is progressively refined as the diagrams are enriched with more
information (see also the incrementality feature below)

• incrementality: Cow_Suite has been conceived for system and integration testing,
which are typically conducted in an incremental fashion, considering
progressively larger parts of the system and addressing, at each incremental step,
the functionalities and the interactions that are relevant at the level considered. In
Cow_Suite, the tester interacts with the tool to decide the integration stage for
which the test suite should be derived (or, which elements of the UML model
should be tested). Then, taking as a reference the corresponding UML diagrams,
the UIT method derives the test cases at a specification granularity corresponding
to the degree of detail at which the considered diagrams are modeled. We are not
aware of other UML-based test methods explicitly addressing incremental testing

• scale: Cow_Suite trades thoroughness for comprehensiveness: as we intend to
address UML-based testing of real-world systems in a practical, efficient way, the
capability to manage big test suites keeping under control their sizes and
functional coverage has been provided via the Cowtest component. Other authors
have proposed thorough and meticulous algorithms for deriving detailed test
cases, but these methods either cannot scale up to handle the many big UML
diagrams that are needed to model huge, complex systems, or would result in an
unfeasibly large set of test cases. In contrast, the combined usage of Cowtest and
UIT permits to derive a feasible number of test cases while keeping the coverage
of functional areas as wide as possible

We have pursued these four features of usability, timeliness, incrementality and
scale in organic and systematic manner since the very inception of the approach,

The Cow_Suite Approach to Planning and Deriving Test Suites in UML Projects 385

resulting in a UML-based test methodology that is unique and complementary with
regard to existing methods.

While preliminary outlines of UIT and of Cowtest have been separately presented
elsewhere ([1] and [2], respectively), in this paper we provide an overview of the
integrated Cow_Suite methodology (Section 2), including several refinements and
improvements to UIT and Cowtest since their early appearance, and describe the
Cow_Suite tool in its current status (Section 3). Related work is surveyed in
Section 4, and the Conclusions are quickly drawn in Section 5.

2 Cow-Suite Methodology

As already stated, the Cow_Suite approach consists of two components, working in
combined way: the Cowtest strategy, described in Section 2.3, and the UIT method, in
Section 2.4. Before, in Section 2.1 we express the minimal necessary requirements to
Cow_Suite application, and in Section 2.2 we introduce the �Course Registration
System� (CRS) [5], to which we refer in the examples.

2.1 Prerequisites to Applying Cow_Suite

The leading criterion of Cow_Suite is to use the same UML diagrams developed
during specification and design, without imposing to the UML designers any
additional formalism, or ad-hoc effort. The approach can be used in all the phases of
the software development process, even though some diagrams have yet to be
completed or refined.

Of course, like any other test strategy, Cow_Suite needs to refer to a documented
and systematic design process and for this reason we set some minimal requirements.
However, they are very basic requirements, in no way test-specific: they establish a
minimum discipline in design documentation that should be enforced in any standard
software engineering process, and not only for the sake of testers.

Cow_Suite is mainly based on the analysis of the Use Case (UC) Diagrams and
Sequence Diagrams1 (SDs). We need to be able to organize the UCs described in the
Use Case Diagrams in a sort of hierarchy, i.e., to explicitly define associations and
relations among the developed UCs, and among Actors and UCs, such as, for
example, �uses� or �generalization� relationships.

Moreover, it is important to keep trace of how a UC is refined in the low level
design; this means to specify how a high level UC, i.e., a system functionality, is
realized within the packages of the design model.

Finally, as the UIT method is based on an analysis of the SDs, the description of
relevant scenarios results of course essential.

However, in early design phases, it is plausible that the UCs are defined at a high
level, and many of them have to be completed, and similarly that not all relevant
scenarios are elicited or documented. The Cow_Suite approach can be useful also
under these conditions, because it can highlight points of weakness in the reference

1 Collaboration Diagrams are also usable because, for our purposes, they contain the same

information of Sequence Diagrams. Nevertheless, we refer here only to SDs analysis.

386 Francesca Basanieri et al.

documentation, thus providing a picture of the project level of completeness and
prompting the user for the revision or the completion of the unfinished diagrams.

2.2 Case Study Description

We consider the Course Registration System (CRS) [5], which is an on-line course
registration system for the Wylie College. The CRS users are students, professors and
a registrar. They get access to the system via a login function through PC clients. In
particular:
• a student can either register to the courses belonging to the current semester

course catalogue or view his/her own data relative to the previous semester.
• a professor can select the courses he/she wants to teach from the course

catalogue, also defining the dates and times the specific course will be given, and
submit the grades.

• a registrar is the responsible of professors and students� information. He/she
maintains and verifies the data and the course registrations, checking that there
are enough people per course, and notifies the students in case the required
courses are cancelled.

The CRS interacts also with a Billing system, which keeps trace of the students
registered in each course offering that is not cancelled, so the students can be billed.

In real project development not all system functionalities are developed
contemporarily or are specified at the same level of detail. This is the situation we
consider: we suppose that the developer concentrates first on the realization of the
student system interaction, represented by the system functionalities named: Login,
used by the students to log into CRS; View Report Card, that allows the students to
consult their report cards for the previously completed semester; and finally Register
for Courses, that allows the students to register to courses in the current semester. The
Course Catalog provides a list of all the course offerings for the current semester, so
that the students can also modify or delete previous course selections, if the changes
are made within the add/drop period at the beginning of the semester.

2.3 Cowtest

Cowtest (Cost Weighted Test Strategy) provides a practical help to managers for test
planning. We provide a stepwise description of Cowtest below. We distinguish two
different test planning schemes: testing must respect a certain resource investment,
which we translate in practice into fixing the number of test cases; or the test cases
must cover a fixed percentage of functionalities. Accordingly, the Cowtest strategy
can implement two approaches: fixed number of tests or fixed functional coverage.
The choice between either of the two is performed in Step 5.

Step 1: Identify and organize the graphs representing the design model structure. A
UML design consists of several diagrams made by different model elements, and
forming different views of the system. From the main Use Case Diagram onwards,
considering each developed diagram and their mutual relationships, we organize the
model elements into a defined structure. At this stage we only consider the Actors,
UCs, SDs and organize them in an oriented graph MG (V, E), called the Main Graph,

The Cow_Suite Approach to Planning and Deriving Test Suites in UML Projects 387

representing a global description of the project. The vertices in the set V of MG are
the defined model elements2, and the oriented arcs in the set E represent the
relationships between these elements, such as realizes, extends, uses, traces and so on.
Figure 1 reports the Main Graph corresponding to the CRS case study.

It may not be always possible to represent the design description with only a single
graph. When some connections between the different model elements are missing, or
there is some hole in the design, the vertices of the set V result split out into disjoint
subsets and the Main Graph is disconnected into more subgraphs.

The model elements can also be organized from a different perspective, by
considering the packages and their components. In this case we obtain the graph
DG(V�, E�), called the Design Graph: the set of vertices V� consists of all the
developed packages or components and the set of arcs E� represents the dependences
between these elements.

The Main Graph and the Design Graph differ for the model elements they consider,
but especially for the kind of information they collect. The Main Graph is, in fact, a
high level representation of the system: the UCs represent the functionalities or the
sub-functionalities of the system and the SDs the description of how the UCs are
realized by the interaction between objects and actors. The Design Graph, instead,
provides a lower level description of the system: the packages represent the
components or sub-components that will be implemented and the graph structure is a
mapping of the project architecture.

Due to space limitations, in this paper we only consider the situation in which one
single connected graph can be derived for each of the Main Graph and the Design
Graph. In particular, the next steps will be developed for the Main Graph only; the
procedure for the Design Graph is the same.

Step 2: Trees derivation. The Main Graph is explored by using a modified version of
the Depth-First Search algorithm [4]. The algorithm produces a forest of several Main
Trees. This hierarchical organization constitutes a detailed documentation of what has
been developed so far, highlighting the structural decomposition of the functions.
More specifically for each of the derived Main Trees:
• The root is always represented by an actor, who is a person (or external system)

interacting directly with the system. The actor requests are therefore the
functional stimuli to the system.

• The UCs at the first level represent the requirements, each associated with a
different functionality the system must realize. In particular, a functionality could
be in turn specialized or refined into sub-functionalities, that correspond to the
UCs at the second level in the tree.

• The SDs (if any) at the second level of the tree describe the interactions and the
exchanged messages among the objects belonging to one of the UCs at first level.

• Considering the i-th level of the tree, the UCs represent the description or the
realization the sub-functionalities and the SDs the description of the objects
interaction of the UCs at the upper level.

2 In this case we consider in V only the SDs in relation with one or more actors or UCs.

388 Francesca Basanieri et al.

• Some parts of the tree are opportunely marked: they belong to other trees or to
repeated nodes and signal the presence in the Main Graph of cycles or of
elements reused in more diagrams.

Sequence Diagram: Close
Registration / Close Registra tion -
Less than 3 students

Billing System

(from Actors)

Maintain Professor Information

(from Use Cases)

Maintain Student Information

(from Use Cases)

Registrar

(from Actors)

Student
(from Actors)

Submit Grades
(from Use Cases)

Professor

(from Actors)

Course Catalog

(from Actors)

Select C ourses to Teach
(from Use Cases)

Sequence Diagram: Close
Registration / Close Registra tion -
Main Flow (close offerings)

Sequence Diagram: Close R egistration /
Close Registration - Main Flow (bill
students)

Sequence Diagram: Login /
CourseCatalog - getOfferings

Collaboration Diagram: Login /
CourseCatalog - getOfferings

Sequence Diagram: Login / Login
- Main Flow

Login
(from Use Cases)

Login

(from Use Case Realizations)

Close Registration
(from Use Cases) Close Registration

(from Use Case Realizations)

Sequence Diagram: Register for
Courses / Register For Courses
- Main Flow (Part 3 -
Completion)

Sequence Diagram: Register for
Courses / Register For Courses -
Main Flow (no distribution)

Sequence Diagram: Register for
Courses / Register For Courses -
Main Flow (Part 1 - Set-Up)

Sequence Diagram: Register
for Courses / Subscribes and
Observer

Sequence Diagram: Register for
Courses / R egister For Courses -
Main Flow (Part 2 - Course
Selection))

View R eport Card

(from Use Cases)

Register for Courses

(from Use Cases)

Register for Courses

(from Use Case Realizations)

Fig. 1. Main Graph of the Course Registration System

Each level of the tree evidences a different degree of detail of the system
functionalities and consequently represents a specific level of integration. Based on
the tree levels, we introduce the concept of an integration stage, where the i-th
integration stage is represented by the UCs at i-th level of the tree and by every SDs,
children of these nodes, situated at i+1-th level.

Fig. 5 reports the structure of the Main Tree rooted at the actor Student3. The UC
node Login at first level is filled (and labelled with a �R� not visible in the figure),
because it is a multiply used functionality as evident from the Main Graph (more than
one actor are associated to it). Considering Fig. 5, the 2nd integration stage is
represented by all the SDs at the third level in the tree, the actor Course Catalog
and the nodes Login and Register for Courses at second level.

3 The number in square brackets associated to each node will be explained in step 3.

The Cow_Suite Approach to Planning and Deriving Test Suites in UML Projects 389

The trees derivation step can also be applied in the anomalous situation in which
the Main Graph is not connected. In this case the modified Depth-First Search
produces a set of �anomalous trees�, formed by a single model element, or not rooted
at an actor, but at a UC. We classify these trees as �Not Linked� and we do not
consider them in the strategy application. They will be reconsidered only after the
proper associations in the UML design are given.

Step 3: Assign weights to the nodes. Generally the various system functionalities do
not have the same �importance� for the overall system performance or dependability,
and the testing effort should be planned and scheduled consequently. Different criteria
can be adopted to define what �importance� means for test purposes, e.g., the
component complexity, or the usage frequencies (such as in reliability testing [9]).
Oftentimes, these criteria are not documented or even explicitly recognized, but their
use is implicitly left to the sensibility and expertise of the managers. Cowtest basic
idea is that we ask managers to make explicit these criteria and provide them with a
systematic strategy to use such information for test planning.

In particular, considering the derived trees, managers are requested to annotate
level by level the nodes with a value, belonging to the [0,1] interval, representing its
relative �importance� with respect to the other nodes at the same level. This value,
called the weight, must be assigned in such a manner that the sum of the weights
associated to all the children of one node is equal to 1; the more critical a node the
higher its weight.

Considering the CRS case study, we assumed that Login and Register for
Courses are the new added system functionalities and therefore assigned to them a
higher weight than that associated to the already built View Report Card. In
particular Register for Courses is more complex, in term of implemented
features, than Login, so its testing must be more accurate. Based on these
considerations we assign the values 0.50, 0.30, 0.20 to Register for Courses,
Login and View Report Card, respectively. In Fig. 5, the weights assigned to
each node are represented by the numbers reported in square brackets close to the
node name.

Step 4: Integration stage selection and weighted trees derivation. Before applying
one of the proposed Cowtest strategies, it is necessary to define the integration stage
at which the testing is going to be performed. Fixing an integration stage means to
decide which nodes to consider for testing, so that the relative weights can be
computed. The final weight of every node is then computed as the product of the
weights of all nodes on the complete path from the root to this node. It is the reference
index for choosing among the tests to execute in the next step. Note that the sum of
the final weights of the leaves is still equal to one.

For example, in Fig. 5, if the 2nd integration stage is selected, the final weight of
the SD Register For Courses – Main Flow (Part 1 – Set-up) is
0.1 = 0.25*0.8*0.5.

Step 5: Cowtest_ing. The last step of the proposed strategy is to select the method to
adopt for test case derivation. As said previously we consider two different situations:
either a certain number of tests is fixed, or the percentage of functional coverage is
chosen as a stopping rule.

390 Francesca Basanieri et al.

Cowtest_ing with fixed number of tests
If a number NT of test cases is fixed (or, more plausibly, only a test budget up to

NT tests can be afforded), our strategy can be used to select NT test cases out of the
many test cases that could be conceived. In fact, using the final weight, called nw,
associated to each SD, the number nt of tests to be selected can be easily derived as:

 5.0* += NTnwnt .
In Fig. 6, for every node of the Main Tree rooted at the Actor Student, selecting

the 2nd integration stage, and considering a number NT of tests equal to 500, the
values NTP represent the number of tests nt assigned to every node. For example the
assigned number of tests for Register For Courses – Main Flow (Part
1 – Set-up) is given by 50= 500*0.1+0.5.

Cowtest_ing with fixed functional coverage
Let us now consider the alternative case in which a certain percentage of functional

test coverage (e.g. 80%) is established as an exit criterion for testing. In this case
Cowtest can drive test case selection, by highlighting the most critical system
functionalities and properly distributing the test cases.

For each SD that represents a leaf at the chosen integration stage, its final weight,
nw, is calculated as above. Considering then the fixed coverage C, the selection of the
functional test cases to be run can be derived ordering in decreasing manner the
nw*100 values and summing them, starting from the heaviest ones, until C is reached.

For example for the Main Tree rooted at the Actor Student (Fig. 5), considering
the 2nd integration stage and the final weight of every leaf, the 80% functional
coverage is reached covering the nodes: View Report Card, Login- Main Flow,
Course Catalogue – getOfferings, Course Catalog, Register for
Courses, Register For Course – Main Flow (Part 3- Completion),
Register For Courses– Main Flow (Part 1 Set-Up), Register For
Courses– Main Flow (Part 2 – Course Selection). The sum of their final
weights times 100 is in fact equal to 81.

Moreover using the final weights of the selected leaves, normalized so that their
sum is still equal to 1, it is also possible to derive the minimum number of test cases
required to reach the fixed coverage. In this case the minimum number of test cases
is 8, one test per leaf except View Report Card that requires 2 test cases.

2.4 UIT

UIT, largely inspired by the Category Partition method [11], was originally [1]
conceived for integration testing in order to systematically test the interactions among
the objects, or objects groups, involved in a SD. Within the Cow_Suite approach, we
have integrated a modified version of the UIT method, for clarity called here UIT_sd,
by which test derivation is done once for each SD as a whole and not separately
considering the objects involved. UIT_sd, similarly to the UIT method, constructs the
Test Procedures using solely the information retrieved from the UML diagrams. A
Test Procedure, see Fig. 4, consists of a sequence of messages, and of the associated
parameters, and instantiates a test case.

UIT_sd is an incremental test methodology; it can be used at diverse levels of
design refinement, with a direct correspondence between the level of detail of the
scenarios descriptions and the expressiveness of the Test Procedures derived. All the

The Cow_Suite Approach to Planning and Deriving Test Suites in UML Projects 391

SDs relative to a selected integration stage constitute the basis for the UIT_sd method.
For each selected SD, the algorithm for Test Procedures generation is the following:
1. Define Messages_Sequences. Observing the temporal order of the messages

along the vertical dimension of the SD, a Messages_Sequence is defined
considering each message with no predecessor association, plus, if any, all the
messages belonging to its nested activation bounded from the focus of control
region [14]. A Messages_Sequence represents a behavior to be tested and
describes the interactions among objects necessary to realize the corresponding
functionality.

2. Analyse possible subcases: the messages involved in a derived
Messages_Sequence may contain some feasibility conditions (e.g., if/else
conditions). These conditions are usually described in the message notes or in the
message specification and are formally expressed using the OCL notation [14]. If
these feasibility conditions exist, a Messages_Sequence is divided in subcases,
corresponding to the different possible choices.

3. Identify Settings Categories: for each resulting Messages_Sequence, we define
the Settings Categories as the values or data structures that can influence its
execution. In detail, they can be determined:
- from all the messages involved, by considering their input parameters;
- from the analysis of possible Class Diagrams to which the messages belong,

by examining the attributes and data structures that can affect the observed
interactions.

4. Determine Choices: for each Settings Category and for each Message belonging
to a Messages_Sequence, the possible choices are identified as follows:
- for the Messages, they represent the list of specific situations, or relevant

cases in which the messages can occur;
- for the Settings Categories, they are the set or range of input data that

parameters or data structures can assume.
5. Determine Constraints among choices: the values of different choices inside a

Messages_Sequence may turn out to be either meaningless or even contradictory.
To avoid this, the Category Partition methodology suggests to introduce
constraints among choices. These are specified by assigning to choices certain
Properties used to check the compatibility with other choices belonging to a
same Messages_Sequence, and by introducing the IF Selectors, which are
conjunctions of properties previously assigned.

6. Derive Test Procedures: a Test Procedure is automatically generated for every
possible combination of choices, for each category and message involved in a
Messages_Sequence. For each analysed SD, a document, called the Test Suite,
collects all the derived meaningful Test Procedures grouped by
Messages_Sequences.

Here below, we report an example of UIT_sd application to the SD Login-Main
Flow in Fig. 2. Following the sequencing of messages along the vertical axis it is
possible to initially define (Step1) four Messages_Sequences (M_S) such as:

- M_S1: 1.start(), 1.1.open()
- M_S2: 2.enterUserName(String)
- M_S3: 3.enterPassword(String)

392 Francesca Basanieri et al.

- M_S4: 4.loginUser(), 4.1validateUserIDPassword(String, String),
4.2.setupSecurityContext(), 4.2.1.newUserID(),
4.3.closeLoginSection()

Fig. 2. Sequence Diagram �Login-Main Flow� from CRS example

Fig. 3. Choices values for Messages_Sequence 4.1

As Step 2 describes, a feasibility condition in messages 4.2 and 4.3 can be
observed: the value of login successful determines the execution of messages
4.2.1 or 4.3 so that Messages_Sequence 4 is split in two different subcases:

Choices values for Messages_Sequence 4.1

Settings Categories: Messages:
 ui d Loginuser()
 m.Jackson access request of a new user [Property new]
 f_smith access request of a registered user [Property registered]
 paul_white access request of a not allowed user [Property notAllowed]

 s_71whatson access request of a expired account user[Property expiredAccount]
 ����..

 pwd validateuserIDPassword(uid, pwd)
 m56jkrm access validation of a new user [IF new]
 annamaria access validation of a registered user (correct uid and pwd) [IF registered] p71271 access validation of a registered user (wrong uid or pwd) [IF registered] 12.2.73 access validation of a not allowe d user [IF notAllowed]
 ���. access validation of a expired account user [IF expiredAccount]

 setupSecurityContext()

 successful access of a registered user [IF registered]

 successful access of a new user [IF new]

 newUserID()

 access of a new user [IF new]

 : Student : MainApplicationForm : LogonForm : SecureUser

if (login
successful)

else

1. start() 1.1. open()

2. enterUserName(uid)

3. enterPassword(pwd)

4. loginUser()

4.1. validateuserIDPassword(uid, pwd)

4.2. setupSecurityContext()

4.3. closeLoginSection()

4.2.1. newUserID()

The Cow_Suite Approach to Planning and Deriving Test Suites in UML Projects 393

- M_S4.1: 4.loginUser(), 4.1.validateIDPassword(String,String),
4.2.setupSecurityContext(), 4.2.1.newUserID()

- M_S4.2: 4.loginUser(), 4.1.validateIDPassword(String, String),
4.3.closeLoginSection()

For each derived Messages_Sequence, the Settings Categories can be identified (Step
3). In M_S4.1, for example, the categories are: uid and pwd, representing the
parameters of the messages involved. Then (Step 4) for each message and for each
Settings Category it is necessary to determine the Choices. Fig. 3 shows the definition
of Choices for M_S4.1. All the Choices, inserted by the user, are collected in a
database and visualized under the Category definition, as shown in Figure 7, so that
the user can modify, add or remove them. In Fig. 3, the Constraints values (Step 5)
associated to the Choices in square brackets can also be observed. Finally, as
described in Step 6, the relevant Test Procedures are generated; the fixed amount of
Test Procedures (as imposed by the strategy application) is randomly extracted from
the potentially derivable ones. If the Test Procedures to be performed are exceeded, a
warning message is issued to the user, who could insert more choices values. Fig. 4
shows one of the derived Test Procedures for the Login-Main Flow SD.

Fig. 4. Test Procedure2 example

3 Cow_Suite Tool

The Cow_Suite approach can be naturally adopted and automated by industries using
any UML design tool. We have implemented it into the Cow_Suite tool, designed to
be compatible in particular with Rational Rose [13], one of the most widely used
commercial tools for UML design. Cow_Suite retrieves the information extracted by
Rose from the UML design using the REI (Rational Rose Exthensibility Interface)
libraries.

The Cow_Suite tool consists of three working windows: Cowtest, UIT and Test
Specification, implementing respectively the Cowtest approach, the methodology
UIT_sd and the Test Procedures generation.

The execution starts by analysing the Rose .mdl file (the internal representation of
the parsed UML diagrams) and proceeds with the construction of the Main Trees and
the Design Tree. Fig. 5 shows the Main Trees, the Design Tree and the list of �Not
linked� elements derived for the CRS case study. Looking at this figure, we can
notice that the tool provides, continuously as the design evolves, a complete overview
of the specification status of the diverse system functionalities.

Test Procedure
loginUser()

access request of a registered user
validateuserIDPassword(uid, pwd)

access validation of a registered user (correct uid and pwd)
setupSecurityContext()

 rID()
 access of a new user

uid
f_smith

pwd
m56jkrm

394 Francesca Basanieri et al.

Considering every Main Tree, the tool, by default, distributes in a uniform way the
weights (Step 3) among the nodes at the same level of integration. However the user
can always modify any of the assigned weights, and the values of the other nodes are
automatically normalized. Following Step 4, the user selects an integration level on a
Main Tree and directly chooses, in a dialog window, the test strategy to use. For each
selected integration stage, the tool directly derives a weighted subtree according to the
chosen test criterion. In Fig. 6, the UIT Tree for the CRS example is reported. In
particular the SD nodes keep track of the number of Test Procedures that must be
developed accordingly to the test strategy selected. In Fig. 6, the left window shows
the selected subtree, while, on the top right, all the SDs are collected together. In the
bottom right window only the user selected SDs are listed.

Then, for each selected SDs, the Cow_Suite tool automatically constructs the
Messages_Sequences applying UIT_sd. Fig. 7 shows, on the left, the list of
Messages_Sequences derived for the CRS example. Each Messages_Sequence
contains the lists of all Messages and the Settings Categories involved plus its
feasibility condition (where existing).

After Messages_Sequences derivation, the user, using some dialogue windows, can
interact with the tool for inserting the Choices values, after which the Test Procedures
are automatically derived. As explained in Section 2.4, the tool excludes
automatically the combinations of parameters that result contradictory or
meaningless. Fig. 7 shows on the right some of the final resulting Test Procedures for
the CRS example.

The Test Suite document is so far a text file document, but the Test Procedures
final format can be easily adapted to become the input format of a particular Test
Driver. To this regard, we remark that the Cow-Suite tool does not execute the
derived Test Procedures: to this purpose Cow_Suite should interact with a test driver,
to which the derived tests should be passed to be automatically launched.

Fig. 5. Main Cow_Suite tool window with Main Trees, Design Trees and Not Linked elements

The Cow_Suite Approach to Planning and Deriving Test Suites in UML Projects 395

Fig. 6. UIT Window with the derived UIT Tree, the set all SDs found and the selected SDs

4 Overview of Related Work

Even though UML is widely employed in industry and research, only a little part of
the literature so far has addressed its use in the testing phases.

In many cases, the tests are derived by translating the UML diagrams into an
intermediate formal description, which can be processed by tools already constructed
for different methodologies and adapted to the UML specifications. This is the case of
[7], in which the authors present a tool, UMLAUT, that is used to transform the UML
representation of the system into a form suitable for validation within their
VALOODS framework.

In [10] the authors translate the UML State Diagrams into formal SRC
specifications, from which input data for unit testing are automatically generated. The
same authors have presented in [11] a model for performing static analysis and
generating tests inputs from a formal design description of collaboration diagrams
specifications. In [8] an approach to derive test cases from UML Statecharts is also
investigated, exploiting a formal semantic constructed for UML Statecharts.

Another widespread approach is to augment the UML description with specific
notations to support test derivation. This is the case, for example, of the Siemens
Corporate Research approach [6], where the developers first define the dynamic
behaviour of each system component using a State diagram; the interactions between
components are then specified by annotating the State diagrams, and hence the global
FSM that corresponds to the integrated system behaviour is used to generate the tests.

In the TOTEM approach [3], the definition of new stereotypes and a rigorous use
of OCL notation is required. The authors utilize class invariants and a detailed formal
description of UML diagrams (Use Case, Sequence, Collaboration and Class) to early
derive test requirements used then to derive test cases, test oracles and test drivers.

396 Francesca Basanieri et al.

Fig. 7. Messages_Sequences, Choices and Test Procedures for the SD Login-Main Flow

We also mention the recent SCENTOR approach [15], which aims at supporting
the generation of scenario-based testing using Junit as a basis.

How Cow_Suite is different from and, in our opinion complementary to, these
approaches has been already discussed in the Introduction.

5 Conclusions

This paper contribution is the presentation of the Cow_Suite methodology to support
test planning and automated test derivation in UML-based projects. The methodology
consists of the combination of the Cowtest strategy for test selection, and of the UIT
method for test generation.

The emphasis of our research is in the usability and transferability of the results.
We have conceived the Cow_Suite UML-based test methodology keeping in mind the
features of complexity, uncertainty and cost characterizing real-world development
environments

In this view, we are currently validating the applicability and usefulness of the
approach in an industrial context. A comparison between the Cow_Suite derived test
plan and the manually derived, standard test plan for a real system, showed that the
achieved functional coverage levels were comparable, but the former could be applied
earlier and did not require a deep knowledge of the system, as it was the case for the
manually derived tests. More experience with the tool is planned.

The Cow_Suite Approach to Planning and Deriving Test Suites in UML Projects 397

Acknowledgements

The Cow_Suite project is partially funded by Ericsson Lab Italy (ERI, Rome), in the
framework of the PISATEL research laboratory (http://www.iei.pi.cnr.it/ERI). We
wish to thank Alberto Ribolini of IEI-CNR, who has implemented great part of the
Cow_Suite tool.

References

1. Basanieri, F., Bertolino, A.: A Practical Approach to UML-based Derivation of
Integration Tests. Proceeding of QWE2000, Bruxelles, November 20-24, 3T.

2. Basanieri, F., Bertolino, A., Marchetti, E.: CoWTeSt: A Cost Weighted Test
Strategy. Proceeding of ESCOM-SCOPE 2001, London, England, 2-4 April
2001.

3. Briand, L.C, Labiche, Y.: A UML-Based Approach to System Testing. UML
2001, Toronto, Canada, 1-5 October 2001.

4. Cormen, T. H., Leiserson, C. E., Rivest R. L., Stein, C. Introduction to
Algorithms, Second Edition.The MIT Press and McGraw-Hill, 2001.

5. Course Registration System for Wylie College. On-line at
http://www.rational.com/products/rup/resourse_center/examples.jsp

6. Hartmann, J., Imoberdof, C., Meisenger, M.: UML-Based Integration Testing.
ISSTA 2000, Portland, August 2000.

7. Jézéquel, J., M, Le Guennec, A., Pennanech, F.:Validating Distributed Software
Modeled with UML: Proceeding of UML98, in LNCS 1618, pp. 365-376.

8. Liuying. L., Zhichang, Q.: Test Selection from UML Statecharts. Proceeding of
31st International Conference on Technology of Object-Oriented Language and
System, Nanjing, China, 22-25 September 1999.

9. Musa, J.D., Iannino, A., and Okumoto, K.: Software Reliability � Measurement,
Prediction, Application. McGraw-Hill, New York, 1987.

10. Offutt, J., Abdurazik, A.: Generating Test from UML Specifications. Proceeding
of UML 99, Fort Collins, CO, October 1999.

11. Offutt, J., Abdurazik, A.: Using UML Collaboration Diagrams for Static
Checking and Test Generation. UML 2000, University of York, UK, 2-6 October
2000.

12. Ostrand, T., J., Balcer, M.,J: The Category Partition Method For Specifying and
Generating Functional Tests". Communication of the ACM, vol. 31, no.6, June
1988, pp. 676-686.

13. Rational Rose tool, On line at http://www.rational.com/products/rose/index.jsp
14. UML Documentation version 1.3 Web Site. On-line at

http://www.rational.com/uml/resources/documentation/index.jsps/
15. Wittevrongel, J. Maurer, F.: Using UML to Partially Automate Generation of

Scenario-Based Test Drivers. OOIS 2001, Springer, 2001

	Introduction
	Cow-Suite Methodology
	Prerequisites to Applying Cow_Suite
	Case Study Description
	Cowtest
	UIT

	Cow_Suite Tool
	Overview of Related Work
	Conclusions
	Acknowledgements
	References

