
SPECIAL THEME: AUTOMATED SOFTWARE ENGINEERING

30 ERCIM News No. 58, July 2004

least one cycle (in fact, in the last cycle
of sequences built by GATeL) are stated
by reach directives. To build a sequence
reaching the test objective according to
the Lustre model of the program and its
environment, these three elements are
automatically translated into a constraint
system. A resolution procedure then
solves this system through alternate
propagation and labelling phases.
Propagation checks the local coherence
of the system, while labelling aims at
incrementally eliminating the constraints
by the choice of a variable and a value
within its authorised domain.

The random aspect of this resolution
procedure implies that the input domains
are not fairly covered, meaning quite
distinct sequences may be generated for
the same objective (for instance,
different ways to raise an alarm). A

second step in the definition of a selec-
tion strategy is to help GATeL to distin-
guish these sequences. This can be
achieved by splitting the constraint
system so that each sub-system charac-
terises a particular class of behaviour
reaching the objective. This splitting can
be processed interactively either by
applying predefined decompositions of
boolean/integer/temporal operators in
the Lustre expressions corresponding to
the current constraint system, or by
declaratively stating through a dedicated
split directive the various behaviours one
wants to observe. Notice that a system-
atic unfolding of different classes of
operators would lead to the usual struc-
tural coverage criteria.

Finally, test submission consists in
reading input sequences generated with
GATeL, computing program outputs,

and then comparing these values to the
expected ones evaluated during the
generation procedure. When the
program has not been automatically
generated from the Lustre model, this
gives an automatic oracle. For the alter-
native case, the truth value of the test
objective can play the role of a partial
oracle. Methodological and efficiency
aspects of GATeL are still under devel-
opment. However, it has been success-
fully applied implemented in on indus-
trial case studies, and has generated
sequences of a thousand cycles, after the
resolution of several thousand
constraints over more than forty input
flows.

Please contact:
Bruno Marre, Benjamin Blanc
Commisariat à l'Energie Atomique, France
Tel: +33 1 6908 5416
E-mail: benjamin.blanc@cea.fr

The Cow_Suite (COWtest pluS UIT
Environment) approach supports the
early generation of high-level strategic
test plans, which can be outlined during
the early phases of software life cycles
and continuously refined and updated
throughout development as the design
evolves. Cow_Suite combines two orig-
inal components: a method to derive test
cases, called UIT (Use Interaction Test),
and a strategy for test prioritization and
selection, called Cowtest (Cost-
Weighted Test Strategy). These two
components work in conjunction as
Cowtest helps decide which and how
many test cases should be planned
within the universe of test cases that UIT
could derive for the entire system under
consideration.

The tool was developed at ISTI-CNR in
collaboration with Ericsson Lab Italy
(ERI, Rome), within the framework of
the PISATEL inititative.

Cow_Suite Features
With respect to the many UML-based
test approaches already proposed, the
main innovative features of Cow_Suite
can be summarised as:
• usability: there is no need to augment

the UML specifications with specific
annotations to facilitate test derivation,
nor to translate the UML diagrams into
an intermediate notation that the
testing methods can process.
Cow_Suite adapts to the modelling
notations and procedures in use, and
not vice versa.

• timeliness: while other methods
require a complete and fairly detailed
set of UML diagrams, Cow_Suite can
begin to outline a test plan from the
early stages of software development.
Naturally the plan will be as abstract as
the diagrams being processed.

• incrementality: Cow_Suite has been
conceived for system and integration
testing, typically conducted in an
incremental fashion, considering
progressively larger parts of the
system and addressing, at each step,
the relevant functionalities and inter-
actions for that level.

• scale: Cow_Suite trades thoroughness
for comprehensiveness: it addresses
UML-based testing of real-world
systems in a practical, efficient way.

by Francesca Basanieri, Antonia Bertolino, Gaetano Lombardi,
Giovanni Nucera, Eda Marchetti and Alberto Ribolini

The Cow_Suite tool provides an integrated, practical and tool-supported approach
to the strategic generation and planning of Unified Modeling Language (UML)-
based test suites for large industrial software systems. The tool can be adopted
from the early stages of system analysis and modelling, and uses the UML
diagrams developed for analysis and design without requiring any additional
formalism or specific ad-hoc effort for testing purposes.

Cow_Suite: A UML-Based Tool
for Test-Suite Planning and Derivation

SPECIAL THEME: AUTOMATED SOFTWARE ENGINEERING

ERCIM News No. 58, July 2004 31

The combined usage of Cowtest and
UIT makes it possible to derive a
feasible number of test cases while
keeping the coverage of functional
areas as wide as possible.

Cow_Suite Usage
The Cow_Suite tool has been designed
to be compatible with the Rational Rose
tool from which it retrieves the required
information. In particular, it employs the
Use Case, Sequence, Communication
and Class diagrams.

The tool execution starts by importing
information on the UML design
elements and organising it in a sort of
hierarchy, whose root is represented by
an Actor and leaves by Sequence or
Communication Diagrams (see Figure
1). This hierarchy provides the user with
a complete view of the status of the func-
tionality specification and up-to-date
documentation on Use Cases and their
Realisation, Sequence and
Communication Diagrams associated
with each specification level, the reused
nodes and those elements not linked with
the other parts of the design.

At this point, users can annotate each
node with a specific weight, representing
the relative 'importance' of this node
with respect to the other nodes at the
same level, and choose between two

supported test strategies: a fixed number
of test cases, or fixed functional
coverage.

Users can then decide the integration
level at which the test suite should be
derived (or which of the elements of the
UML model should be tested), by simply
highlighting a portion of the hierarchy.

The UIT component will then automati-
cally derive a list of test cases on the

basis of the UML diagrams corre-
sponding to the chosen integration level.
These will be specified with a granu-
larity corresponding to the degree of
detail at which the considered diagrams
are modelled. In Figure 2 we show a
schema of the process adopted by the
tool.

Case Study
The Cow_Suite tool has already been
applied to several case studies. In one
industrial case study we compared the
UIT-derived test plan with an existing
test plan (called ERI). The ERI test plan
had been developed manually, following
the standard in-house procedures at
Ericsson, based mainly on the testers'
skill and their knowledge of the system.
The UIT test plan was instead derived
automatically at ISTI-CNR, using only
the available UML design diagrams. The
purpose of the comparison was to eval-
uate the main advantages of the UIT test
plan in terms of cost, schedule and test
strategy selection. The following advan-
tages emerged from experimentation
with the tool:
• derivation of a detailed test plan in

advance with respect to the testing
stage; this plan can be used as a base-
line for deciding the most appropriate
test selection strategy

• a realistic evaluation of the require-
ments and functional coverage that can
be reached (timely implementation of

Figure 1:

The Cow_Suite hierarchical

organisation of the UML

diagrams.

Figure 2: The Cow_Suite usage schema.

SPECIAL THEME: AUTOMATED SOFTWARE ENGINEERING

32 ERCIM News No. 58, July 2004

The goal of TT-Medal is to develop a test
architecture that covers the whole life
cycle of a product, starting from the
initial specifications and ending up with
regression testing during the mainte-
nance phase. Obviously this goal can
only be reached by a testing method-
ology that addresses tests at both an
abstract and an executable level.

In TT-Medal key roles are assigned to
international standards, the Testing and
Test Control Notation (TTCN-3) by
ETSI, the Universal Modeling Language
(UML2.0) and its testing profile by the
OMG. The TT-Medal strategy covers a
systematic testing methodology
including the production of TTCN-3
based tests from UML models and the
development of a generic test infrastruc-
ture and test architectures for TTCN-3
with open interfaces for test execution
and management. Special emphasis is
given to the reuse of test cases between
testing phases and for different products
in the same domain. Three ERCIM

research institutes, CWI, Fraunhofer
FOKUS and VTT Electronics, are the
driving force behind these innovations.

An important aim of TT-Medal is to
develop a test platform based on TTCN-
3 for major European industries such as
automotive, railways, telecommunica-
tion and embedded systems. Four indus-
trial partners in the project,
DaimlerChrysler (Ge), ProRail (NL),
Nokia (Fi,Ge) and LogicaCMG (NL),
will apply the project results with the
objective of unifying the various test
environments in use at the different
companies, and making seamless the
transition from one environment to
another.

Furthermore, tool support will be devel-
oped for automatic test-case generation,
validation and deployment, and to
support the reuse of test cases. Three tool
developers, Conformiq (Fi), NetHawk
(Fi) and Testing Technologies (Ge), are
responsible for this part of the project.

Finally, a complete training package will
be developed by Improve QS (NL), and
will enable European industries to inte-
grate the new improved test practices
into their development processes.

The strong application of the standard-
ised and formalised language constructs
of TTCN-3 and UML2.0 in mainstream
industry provides a special challenge to
the customers and providers of test prod-
ucts and services. Coupling the develop-
ment of system models and tests helps to
optimise the rapid implementation of test
solutions. Combining the potential of
UML2.0, the maturity of TTCN-3 and
the advice of industrial manufacturers is
an exciting process.

The project work is organised into five
work packages, which address issues on
methodology, test development tools,
test execution tools, industrial case
studies, and dissemination and standard-
isation work. There are strong relation-
ships such as major requirements from

by Wan Fokkink, Matti Kärki, Jaco van de Pol, Axel Rennoch,
Ina Schieferdecker and Markus Sihvonen

The need for appropriate means to test systems and software is still alive! Even
though a huge number of test tools are on the market, series of conferences on
testing continue to be held, and an international standard on testing methodology
has existed for more than ten years. Most industries are still looking for ways to
make their testing process more effective, efficient and understandable, to
strengthen confidence in their products and services. Three European countries,
Finland, Germany and the Netherlands, have started a common offensive to
establish a basis for the industrial application of tests and testing methodologies
with advanced languages. Independent national funding sources have been
brought together for the TT-Medal project under the supervision of the Information
Technology for European Advancement (ITEA) association.

Three Countries' Offensive
towards Testing with Advanced Languages

corrective actions or different choices
for the test strategy are possible)

• reduction of the time necessary for test
plan derivation (the same level of
requirement coverage was obtained in
a quarter of the time).

On the negative side we observed that
the automatic derivation of test cases
failed to include exceptional test cases,

that is, test cases to handle abnormal
system behaviour. This is reasonable and
suggests that as good practice an expert
should check the automated test plan
before deployment to cover special situ-
ations.

Further experimentation is of course desir-
able, and Cow_Suite is freely available in
a prototype version for public usage.

Link:
http://www.isti.cnr.it/ResearchUnits/Labs/
se-lab/software-tools.html

Please contact:
Eda Marchetti, ISTI-CNR, Italy
Tel: +39 050 315 3467
E-mail: eda.marchetti@isti.cnr.it

