
Process Partitioning of Dataflow 
Applications

Bartolini Cesare
ISTI – CNR



Embedded System Design

Behavioral

design

Architectural

design

Mapping

Analysis 

Implementation 



Embedded System Design

Ideal
 Comprehensive 

software tools
 Automated testing
 Optimized systems

Current practice
 Manual operation
 Long time
 Arbitrary choices
 Scarce optimization



Goals of This Research

 Define a simple model of execution
– To express the behavior of the system

 Generate task partitioning
– Assign functions to tasks

 Assign deadlines/priorities for scheduling
 Optimize the task set
 HW/SW co-design



Behavioral Design

 Dataflow Application
 Directed Acyclic Graph (DAG)
 Minimal unit is function, not task
 Requirements:

– Path deadlines
– Minimum interarrival times of external events
– WCETs are not required for modeling but only for 

analysis



A Sample Application



Mapping Functionality to Tasks

 We propose 4 different algorithms
– Early Activation (EA)
– Late Activation (LA)
– Rising Deadline (RD)
– Joined Rising Deadline (JRD)

A preemptive EDF scheduler is required



Early Activation

 Simple algorithm
 Only end-to-end constraints are required
 Generates many small tasks
 Activations are before execution
 Little algorithm overhead
 Easy implementation, but not very efficient



Process Partitioning With EA

 Task 1
 Task 2
 Task 3
 Task 4
 Task 5



Deadline Assignment With EA

 jijji Ppd  |min 

   
k

ikkkjijji ppPpwPpD ,|min

:For task Ppi 



EA Scheduling Chart



EA Issues

Advantages
 Few preemptions
 Schedulability test available
 A fixed priority scheduler 

could be used

Drawbacks
 All tasks in a path have the 

same deadline
 Tasks are always activated
 The scheduler must be 

modified
 HW-mapped blocks need 

special treatment
 Generates a large task set



Late Activation

 Similar to EA
 Same requirements as EA
 Activation are after execution
 Generates the same task set as EA
 Usually produces the same schedule as EA
 Slight efficiency improvement



Deadline Assignment With LA

 jijji Ppd  |min 

    
k

ikkkkjijji ppPpcwPpD ,|min

:For task Ppi 



LA Scheduling Chart



LA Issues

Advantages
 Few preemptions
 Tasks are activated only as 

required
 Worst-case analysis is the 

same as EA
 Normal treatment for HW-

mapped blocks
 Can work with fixed 

priorities
 Variant: signaled activation

Drawbacks
 Deadline assignment is no 

better than EA
 Large number of tasks 

created



Rising Deadline

 Requires knowledge or esteem of WCETs
 The activation protocol is the same as in late 

activation
 The task set is the same as in previous 

algorithms
 Deadline assignment is greatly improved
 Schedule is generally different



Deadline Assignment With RD

  iPjji pWCETB
j

 min

  
k

ikkkkii ppPpcwBD ,

:For task Ppi 



RD Scheduling Chart



RD Issues

Advantages
 Every task has its own 

deadline
 Tasks are activated only if 

needed
 Base deadlines can be 

computed offline
 Fits easily in a codesign 

environment
 Can work in fixed priorities

Drawbacks
 Introduces greater 

overhead
 No schedulability analysis 

currently available



Joined Rising Deadline

 Derived from the RD algorithm
 Requires knowledge or esteem of WCETs
 Uses the signaled activation semantics
 Generates a smaller set of larger tasks
 Better use of resources
 Greater algorithm overhead



Process Partitioning With JRD

 Task 1
 Task 2
 Task 3



Deadline Assignment With JRD

  iPjji pWCETB
j

 min

   
k

ikkkkkii ppPptcwBD ,

:For task Ppi 



JRD Scheduling Chart



JRD Issues

Advantages
 Better efficiency, since 

less tasks must be 
scheduled and less 
memory is used

 A good implementation 
creates no more 
overhead than RD

 Can probably work on 
fixed priorities

Drawbacks
 High overhead
 Some path deadlines 

might become shorter 
than is required

 More likely that tasks 
miss their deadlines



Comparison

EA LA

RD JRD



Conclusions and Future Work

 Algorithm comparison
– Metrics

 Number of tasks
 Schedulability
 Overhead on the scheduler

– Probably, there is no best choice
– Different applications would require different algorithms

 Extensions 
– Fixed priority schedulers and non-preemptive schedulers
– HW/SW Co-design
– Multi-processor scheduling
– Distributed systems


