Process Partitioning of Dataflow
Applications

Bartolini Cesare
ISTI — CNR

ERICSSON =



Embedded System Design




Embedded System Design
-

|deal Current practice
e Comprehensive ® Manual operation
software tools e Long time
® Automated testing e Arbitrary choices
® Optimized systems e Scarce optimization



Goals of This Research
/7]

® Define a simple model of execution
- To express the behavior of the system

® Generate task partitioning
- Assign functions to tasks

® Assign deadlines/priorities for scheduling
® Optimize the task set
e HW/SW co-design



Behavioral Design
aamm

e Dataflow Application
® Directed Acyclic Graph (DAG)
® Minimal unit is function, not task

® Requirements:
-~ Path deadlines
- Minimum interarrival times of external events

- WCETs are not required for modeling but only for
analysis



A Sample Application

i W

Eveﬂ
|
5
3 | CE
2
C7
Cd



Mapping Functionality to Tasks
S

e \We propose 4 different algorithms
- Early Activation (EA)
- Late Activation (LA)
- Rising Deadline (RD)
- Joined Rising Deadline (JRD)

A preemptive EDF scheduler is required



Early Activation
aamm

e Simple algorithm

® Only end-to-end constraints are required
® (Generates many small tasks

e Activations are before execution

® | ittle algorithm overhead

e Easy implementation, but not very efficient



Process Partitioning With EA

B Task 1
B Task 2
W Task 3

Task 4
B Task 5




Deadline Assignment With EA
<

For task p. e P:

d,=min %, | p, € P,

D, :minj{Aj | P, EPj}_ZWkapk ePAp,<p,
k



EA Scheduling Chart
.

Task 1

Task 2

y

Task 3 ] l

Task 4 ] l

Task 5 ] l




EA Issues
]

Advantages
® Few preemptions
® Schedulability test available

® A fixed priority scheduler
could be used

Drawbacks

All tasks in a path have the
same deadline

Tasks are always activated

The scheduler must be
modified

HW-mapped blocks need
special treatment

Generates a large task set



Late Activation
]

e Similar to EA

® Same requirements as EA

e Activation are after execution

® (Generates the same task set as EA

e Usually produces the same schedule as EA
® Slight efficiency improvement



Deadline Assignment With LA
<

For task p. e P:

d,=min, 8, | p, € P,

D, :minj{Aj | p; EPj}_Z(Wk+Ck)’pk e PAp, <p,

k



LA Scheduling Chart
-

Task 1 h

Task 2 1| — i

Task 3 ] J,

Task 4 ] l

Task 5 I l




LA Issues
]

Advantages Drawbacks
® Few preemptions ® Deadline assignment is no
e Tasks are activated only as better than EA
required ® |arge number of tasks
® \Norst-case analysis is the created
same as EA

® Normal treatment for HW -
mapped blocks

® (Can work with fixed
priorities
® Variant: signaled activation



Rising Deadline
aamm

® Requires knowledge or esteem of WCETs

® [he activation protocol is the same as in late
activation

® The task set is the same as in previous
algorithms

® Deadline assignment is greatly improved
® Schedule is generally different



Deadline Assignment With RD
<

For task p. e P:

B. = minj {Aj — WCETPJ_ (pl. )}

D, :Bl.—Z(wk+ck),pk cePAp, <Dp,
k



RD Scheduling Chart
.

Task 1

Task 2 ___ I l

Task 3 ]

Task 4 ]

Task 5 I l




RD Issues
]

Advantages
Every task has its own
deadline

Tasks are activated only if
needed

Base deadlines can be
computed offline

Fits easily in a codesign
environment

Can work in fixed priorities

Drawbacks

Introduces greater
overhead

No schedulability analysis
currently available



Joined Rising Deadline
S

® Derived from the RD algorithm

® Requires knowledge or esteem of WCETSs
® Uses the signaled activation semantics

® (Generates a smaller set of larger tasks

® Better use of resources

® Greater algorithm overhead



Process Partitioning With JRD

-_,. B Task 1

B Task 2

-_'. B Task 3




Deadline Assignment With JRD
<

For task p. e P:

B, =min, {Aj —WCETP]_ (pi)}

D, =B, _Z(Wk +Ck(tk))9pk ePAp,<p
k



JRD Scheduling Chart




JRD Issues
7

Advantages Drawbacks
® Better efficiency, since ® High overhead
less tasks must be e Some path deadlines
scheduled and less might become shorter
memory is used than is required
® Agood implementation e More likely that tasks
creates no more miss their deadlines

overhead than RD

e Can probably work on
fixed priorities



Comparison




Conclusions and Future Work
/7]

® Algorithm comparison

- Metrics
e Number of tasks
e Schedulability
e Overhead on the scheduler

- Probably, there is no best choice

- Different applications would require different algorithms
® Extensions

- Fixed priority schedulers and non-preemptive schedulers

- HW/SW Co-design

- Multi-processor scheduling

— Distributed systems



