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Embedded System Design




Embedded System Design
-

|deal Current practice
e Comprehensive ® Manual operation
software tools e Long time
® Automated testing e Arbitrary choices
® Optimized systems e Scarce optimization



Goals of This Research
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® Define a simple model of execution
- To express the behavior of the system

® Generate task partitioning
- Assign functions to tasks

® Assign deadlines/priorities for scheduling
® Optimize the task set
e HW/SW co-design



Behavioral Design
aamm

e Dataflow Application
® Directed Acyclic Graph (DAG)
® Minimal unit is function, not task

® Requirements:
-~ Path deadlines
- Minimum interarrival times of external events

- WCETs are not required for modeling but only for
analysis



A Sample Application
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Mapping Functionality to Tasks
S

e \We propose 4 different algorithms
- Early Activation (EA)
- Late Activation (LA)
- Rising Deadline (RD)
- Joined Rising Deadline (JRD)

A preemptive EDF scheduler is required



Early Activation
aamm

e Simple algorithm

® Only end-to-end constraints are required
® (Generates many small tasks

e Activations are before execution

® | ittle algorithm overhead

e Easy implementation, but not very efficient



Process Partitioning With EA
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Deadline Assignment With EA
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For task p. e P:
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EA Scheduling Chart
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EA Issues
]

Advantages
® Few preemptions
® Schedulability test available

® A fixed priority scheduler
could be used

Drawbacks

All tasks in a path have the
same deadline

Tasks are always activated

The scheduler must be
modified

HW-mapped blocks need
special treatment

Generates a large task set



Late Activation
]

e Similar to EA

® Same requirements as EA

e Activation are after execution

® (Generates the same task set as EA

e Usually produces the same schedule as EA
® Slight efficiency improvement



Deadline Assignment With LA
<

For task p. e P:
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LA Scheduling Chart
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LA Issues
]

Advantages Drawbacks
® Few preemptions ® Deadline assignment is no
e Tasks are activated only as better than EA
required ® |arge number of tasks
® \Norst-case analysis is the created
same as EA

® Normal treatment for HW -
mapped blocks

® (Can work with fixed
priorities
® Variant: signaled activation



Rising Deadline
aamm

® Requires knowledge or esteem of WCETs

® [he activation protocol is the same as in late
activation

® The task set is the same as in previous
algorithms

® Deadline assignment is greatly improved
® Schedule is generally different



Deadline Assignment With RD
<

For task p. e P:
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RD Scheduling Chart
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RD Issues
]

Advantages
Every task has its own
deadline

Tasks are activated only if
needed

Base deadlines can be
computed offline

Fits easily in a codesign
environment

Can work in fixed priorities

Drawbacks

Introduces greater
overhead

No schedulability analysis
currently available



Joined Rising Deadline
S

® Derived from the RD algorithm

® Requires knowledge or esteem of WCETSs
® Uses the signaled activation semantics

® (Generates a smaller set of larger tasks

® Better use of resources

® Greater algorithm overhead



Process Partitioning With JRD
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Deadline Assignment With JRD
<

For task p. e P:
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D, =B, _Z(Wk +Ck(tk))9pk ePAp,<p
k



JRD Scheduling Chart




JRD Issues
7

Advantages Drawbacks
® Better efficiency, since ® High overhead
less tasks must be e Some path deadlines
scheduled and less might become shorter
memory is used than is required
® Agood implementation e More likely that tasks
creates no more miss their deadlines

overhead than RD

e Can probably work on
fixed priorities



Comparison




Conclusions and Future Work
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® Algorithm comparison

- Metrics
e Number of tasks
e Schedulability
e Overhead on the scheduler

- Probably, there is no best choice

- Different applications would require different algorithms
® Extensions

- Fixed priority schedulers and non-preemptive schedulers

- HW/SW Co-design

- Multi-processor scheduling

— Distributed systems



