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Packet .
( Switching — ]
= Increased network traffic
IP/ATM = Voice/data convergence
Networks = Rapid introduction of new
technologies/standards

5 Network devices are growing as a
class of embedded systems

= Network Trends




iDifferent Solutions

1L

T

s ASIC

= ASIP

s Co-Processor
= FPGA

s GPP



iWhat is a Network Processor?

= [t is an instruction set processor for
network applications.

= It enables software implementations of
Key communications functions at
nardware speeds.

= The main NP functions are:
= Header classification
= Deep packet analysis
= Packet Processing
= Policing and statistics
= Traffic management




iReIations Among Solutions
A

Flexibility

Performance



ASIC vs. NP

Time to Market and Time in Market
Point
Product
World
(ASICs)
—
Open
Platform
World
(NP)
—

TIME DOWNLOAD NEW SW!!



iNP vs. Outdoor World
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iA Generic Network Processor
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*NP Philosophy

Control Plane :
= complex algorithms \/\‘
« unusual functions

= control tasks

Data Plane :
= Simple algorithms
= usual functions
« data manage tasks




i Programming an NP

= Typical languages approaches are used
for programming network processors.

= Imperative Paradigm :

= The C language or an its variant :
« CPE
= PPE (some cases)

= Assembly approach :
. PPE
= Functional or 4t/h generation
programming languages.
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i Model Based Development

= MBD is an approach to software
development in which the primary
artefacts of development are models
instead of software.

= MBD does not see everything at once.

= MBD uses representation that can be
useful for the objective of the study at
the given stage.



Abstract Syntax Systems

C Language The UML

Grammar meta-Model

A specific A Specific
C Program UML Model

A specific A Specific

execution phenomenon
ofa C corresponding to
program a UML Model

J.Bézivin,”On the Basic Principles of Model Engineering”



Model Transformations

s Classification of model transformations:

= Model to Text
= Model to Model

s Automation of Model transformation is
key to MBD.

= Different approaches :

= General purpose language approach (Java, C++, ...)
= XML based ( XMI, XSLT )
= Dedicated Transformation Language ( QVT)



iMBD: Top Down Approach
- * * 2 High Abstraction Level
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iMBD: An Horizontal Refinement
‘ ‘ Model at i-th
Abstraction Level

S
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iWhat Do We Propose ?1?

= Design an application for NP:

= Decide which software architecture is best
suited for the goal.

= Represent the hardware architecture of
the chosen NP.

= Map each software unit on a specific
hardware element.

= Work according to the OMG Architecture.



i How Can You Do It ?1?

s Software Model:
= Software Entities
= Relations

= Performance Annotations: Number of code
lines, Memory Allocation Space, etc ...

= Hardware Model:
= Elements : PPEs, Memories, etc ...

= Resources : Memory Size, Latency Access
Time, etc ...
= Mapping: Does a software element

performance annotation meet resources
limitations ?!?



Y-Model for NP Applications
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Dynamic Aspects

= The hardware and software models
represent a static description of the
whole system.

= For a complete application design also
dynamic aspects are required.

= The software model should describe both
the dynamic of a single software unit and
the data-flow among the different units:
= Sequence diagrams
= Queuing networks



Future Works

= Refine the definition of the
methodology (this is on-going
work).

= Defining a Meta-Model for the software
applications.

= Specifying mapping aspects.
= A methodology application to case

studies coming from the industrial
world.



iConcIusions

= We have presented an on-going
work whose goal is the definition of
a MBD approach for the design of
software applications for network
Processors.

= The combination of MBD and NPs
opens a new promising research
field in software system
engineering.
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iMetropoIis: Functionalities

,
i d extends Paort |
procass X [ Lnterfa-:e.l;'.ea
3 process X port Read K, u]:-iatil: int read();
fame Pl port Write W | eval int nltems();
vaid threed(){ intarface Write extends Port |
while(true) | update int write(int data];
nrocess X 8 x = Rread (] eval int nSpace(};
name C r = foalx) ]
Wowrite(z)
= Process X 1 mediim 5 implesents Read, Write {
name P ] int n, space;
] int[] storage;
int read(}{ ... | // body of read
int write(){ ... } [/ body of write
constraint{ 1t1 G{ beg(P0, M.write] -3 Ibeg(Fl, M.write) U end(P0, M.write) &% ;
beg(Pl, M.write] -} [beg(P0, M.write) U =nd(Pl, M.write]); |




Metropolis: Platform

process Task
name T'{

q-manager
Cpulrh

{-managar
BusArb

medium

B3

nrocess Task
name I

(-manager
Energy

(-manager
Time

process Tash |
port CpuService cpiy

void execute(int n) {
{s. .. I/ make request to Cpudch
oo /f to become CHI cuwner
i;l:u.ﬂ:e-:utel:n:l ]
1].n:-i.d read (|

epu. read();
]
void writel) [ ... ]
void thread() { ... ]

nediuz CFU iaplements CpuSecvice |
prt Busfervice bus;

void execute(int o) {
15
.o {{ nake request to Tine
oo 4l for a dela:.r of n elock -::.n:les
5]
]
void read() [ ...
wodd weite() [ ...

]

bus.read (3 1
bz writ=(); 1

neding MY inplenents 3laveBarvice |
void read |
{5
oo {f neke request to Tine
veo ff for a neaccy read -ﬂeia:.r
5]
]

vodd write { ... ]

!

nediim BUS implessnts BusSerwice |
port Slavefarvice nen;

void read(] |

[5 {§ make request to Buséirb
coo 1 to become buz master
£l
men.readl];
1

void write() [ ...

1

men.write(1; |




i Metropolis: Mapping

= Mapping is defined by a new network to
encapsulate the functional and
architectural networks and relating the
two by synchronizing events between
them.



iMetropoIis: Mapping

process X process Task || process Task | | process Task
name PO name T1 name T2 name T3

(-manager
Cpudrh

{-manager
BusArh

process X o
name G

process X
T name P

(-manager
Energy

congtraint{ 1tl G{ beg(PD, M.write] -* lheg(Pl, M.write) U end (PO, M.write) && :
beg(Fl, M.write] -* lbeg (PO, M.write] U end(F1, M.write)); ] medium

BUS

congtraint { 1tl G beg(PO,PO.foo) €-3beg(T1,CPU. axecite (50} &&
ard (FO,P0. foo) £-2and (T, CPU. mxmcirte= (50) ) &&
beg (PO, H.write] 4-*beg(T1,CP0.write] &&

(-manager
Time

end (F1,P1.Fan) {-dend (T2, CPU. execute(50)) &

end (G, C. £on) {-Yend (T3,CP. execute (50)) &
G
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