A Model Based Approach to
Design Applications for
Network Processor

S. Afsharian3, A.Bertolino!, G.De Angelis’,
P.lovanna3, R.Mirandola?

lIstituto di Scienza e Tecnologie

A
dell'Informazione "Alessandro Faedo" CNR Uni D|p ;I.' II{nforrqﬁma\,/&steTl"eolz)qo]dglﬁlone Ital
Via G. Moruzzi 1, 1--56124 Pisa, Italy niversita di Roma "Tor Vergata oma, ltaly

{antonia.bertolino,guglielmo.deangelis}@isti.cnr.it raffaela@info.uniromaz2.it

3Ericsson Lab ltaly
Via Anagnina 203, 00040 Roma - Italy
{sharareh.afsharian,paola.iovanna}@ericsson.com

i Roadmap

= Scenario

= Network Processor Overview
= Model Based Development

= MBD Applied to NPs

= Future Works

= Conclusions

Packet .
(Switching —]
= Increased network traffic
IP/ATM = Voice/data convergence
Networks = Rapid introduction of new
technologies/standards

5 Network devices are growing as a
class of embedded systems

= Network Trends

iDifferent Solutions

1L

T

s ASIC

= ASIP

s Co-Processor
= FPGA

s GPP

iWhat is a Network Processor?

= [t is an instruction set processor for
network applications.

= It enables software implementations of
Key communications functions at
nardware speeds.

= The main NP functions are:
= Header classification
= Deep packet analysis
= Packet Processing
= Policing and statistics
= Traffic management

iReIations Among Solutions
A

Flexibility

Performance

ASIC vs. NP

Time to Market and Time in Market
Point
Product
World
(ASICs)
—
Open
Platform
World
(NP)
—

TIME DOWNLOAD NEW SW!!

iNP vs. Outdoor World
/sf;'e/t"/_\\\

e

iA Generic Network Processor

Network Processor Internal

l ' Memories CPE

PPE Matrix +—+
[

(Vp)]
(D)
O
> © 111 B External
T & <+—) Buses
= > Cluster > Memory
< T t Interfaces

11 Fabric Switch
Cluster Interfaces

*NP Philosophy

Control Plane :
= complex algorithms \/\‘
« unusual functions

= control tasks

Data Plane :
= Simple algorithms
= usual functions
« data manage tasks

i Programming an NP

= Typical languages approaches are used
for programming network processors.

= Imperative Paradigm :

= The C language or an its variant :
« CPE
= PPE (some cases)

= Assembly approach :
. PPE
= Functional or 4t/h generation
programming languages.

iSummarizing
... BUT

GAINS
e~y difficult
" .
el L
4 u _
- ggfca': - rent solution.
"| < [BModeinriven@ leUSE among
= Increa TR rent
- 4 rations
N ‘ "\ 1etimes).
Y

i Model Based Development

= MBD is an approach to software
development in which the primary
artefacts of development are models
instead of software.

= MBD does not see everything at once.

= MBD uses representation that can be
useful for the objective of the study at
the given stage.

Abstract Syntax Systems

C Language The UML

Grammar meta-Model

A specific A Specific
C Program UML Model

A specific A Specific

execution phenomenon
ofa C corresponding to
program a UML Model

J.Bézivin,”On the Basic Principles of Model Engineering”

Model Transformations

s Classification of model transformations:

= Model to Text
= Model to Model

s Automation of Model transformation is
key to MBD.

= Different approaches :

= General purpose language approach (Java, C++, ...)
= XML based (XMI, XSLT)
= Dedicated Transformation Language (QVT)

iMBD: Top Down Approach
- * * 2 High Abstraction Level

*k
C et

System Under Design "
** 2 Low Abstraction Level

Abstraction

sdais parewoliny

iMBD: An Horizontal Refinement
‘ ‘ Model at i-th
Abstraction Level

S
ource D\Qlf“e Server Sink

Queuing Network Model at
i-th Abstraction Level

“:lelled Model 4D<e%'ll o

(e.g. Performance Annotations)

iWhat Do We Propose ?1?

= Design an application for NP:

= Decide which software architecture is best
suited for the goal.

= Represent the hardware architecture of
the chosen NP.

= Map each software unit on a specific
hardware element.

= Work according to the OMG Architecture.

i How Can You Do It ?1?

s Software Model:
= Software Entities
= Relations

= Performance Annotations: Number of code
lines, Memory Allocation Space, etc ...

= Hardware Model:
= Elements : PPEs, Memories, etc ...

= Resources : Memory Size, Latency Access
Time, etc ...
= Mapping: Does a software element

performance annotation meet resources
limitations ?!?

Y-Model for NP Applications

Software
MetaModel

\

Software
Model

~~~
-~
-—
—
—

------ Results [-----

i Mapping
' MetaModel ! Hardware
Tttt AT MetaModel
Hardware
Model

Test Performance

Planning Analysis

-
e -
- e

—
—
e — e




Dynamic Aspects

= The hardware and software models
represent a static description of the
whole system.

= For a complete application design also
dynamic aspects are required.

= The software model should describe both
the dynamic of a single software unit and
the data-flow among the different units:
= Sequence diagrams
= Queuing networks



Future Works

= Refine the definition of the
methodology (this is on-going
work).

= Defining a Meta-Model for the software
applications.

= Specifying mapping aspects.
= A methodology application to case

studies coming from the industrial
world.



iConcIusions

= We have presented an on-going
work whose goal is the definition of
a MBD approach for the design of
software applications for network
Processors.

= The combination of MBD and NPs
opens a new promising research
field in software system
engineering.




i References

20.

Agere. The Challenge for Next Generation Network Processors. White Paper.
A.Heppel. An introduction to network processors, January 2003.

B.Kienhuis, E.Deprettere, K.Vissers, and P.Van Der Wolf. An approach for quantitative analysis of application-specific
dataflow architectures, August 04 1997.

B.Selic. The pragmatic of model-driven development. /EEE Software.

B.Selic. Model-driven development, uml 2.0, and performance engineering. In Proceedings of the Fourth Int.
Workshop on Software and Performance. ACM, 2004. Invited talk WOSP2004.

C.U.Smith and L.Williams. Performance Solutions: A practical Guide To Creating Responsive, Scalable Software.
Addison-Wesley, 2001.

D.Gajski and R.Kuhn. Guest Editors’ introduction: New VLSI tools. Computer, 16(12):11-14, December 1983.

D.Hamlet, D.Mason, and D.Woit. Properties of software systems synthesized from components, June 2003. To
appear as a book chapter. http://www.cs.pdx.edu/ " hamlet/lau.pdf.

D.Husak. Network Processors.: A Definition and Comparison. C-Port. White Paper.

E.D.Lazowska, J.Zahorjan, G.S.Graham, and K.C.Sevcik. Quantitative System Performance. Computer Systems
Analysis Using Queueing Network Models. Prentice Hall, Inc., 1984.

Intel. /ntel IXP2400 Network Processor: Flexible, High-Performance Solution for Access and Edge Applications. White
Paper.

P.Boulet, J.Dekeyser, C.Dumoulin, and P.Marquet. Mda for soc design, intensive signal processing experiment.
FDL’03, Frankfurt am Main.ECS/.

S.A.Hissam, G.A.Moreno, J.A.Stafford, and K.C.Wallnau. Packaging predictable assembly. Lecture Notes in Computer
Science, 2370:108-124, 2002.

Niraj Shah. Understanding network processors. Master’s thesis, University of California, Berkeley, September 2001.
The Aspect Oriented Software Development Web Site. http://aosd.net.

The MDA Web Site. http://www.omg.org/mda/.

The Model-Driven Software Development Web Site. http://www.mdsd.info.

The MOF Web Site. http://www.omg.org/mof/.

T.Stefanov, P.Lieverse, E.Deprettere, and P.Van Der Wolf. Y-chart based system level performance analysis: An M-
JPEG case study, October 16 2000.

V.Cortellessa and R.Mirandola. Prima-uml: A performance validation incremental methodology on early uml
diagrams. Science of Computer Programming, 44(1):101-129, jul 2002.



iMetropoIis: Functionalities

,
i d extends Paort |
procass X [ Lnterfa-:e.l;'.ea
3 process X port Read K, u]:-iatil: int read();
fame Pl port Write W | eval int nltems();
vaid threed(){ intarface Write extends Port |
while(true) | update int write(int data];
nrocess X 8 x = Rread (] eval int nSpace(};
name C r = foalx) ]
Wowrite(z)
= Process X 1 mediim 5 implesents Read, Write {
name P ] int n, space;
] int[] storage;
int read(}{ ... | // body of read
int write(){ ... } [/ body of write
constraint{ 1t1 G{ beg(P0, M.write] -3 Ibeg(Fl, M.write) U end(P0, M.write) &% ;
beg(Pl, M.write] -} [beg(P0, M.write) U =nd(Pl, M.write]); |




Metropolis: Platform

process Task
name T'{

q-manager
Cpulrh

{-managar
BusArb

medium

B3

nrocess Task
name I

(-manager
Energy

(-manager
Time

process Tash |
port CpuService cpiy

void execute(int n) {
{s. .. I/ make request to Cpudch
oo /f to become CHI cuwner
i;l:u.ﬂ:e-:utel:n:l ]
1].n:-i.d read (|

epu. read();
]
void writel) [ ... ]
void thread() { ... ]

nediuz CFU iaplements CpuSecvice |
prt Busfervice bus;

void execute(int o) {
15
.o {{ nake request to Tine
oo 4l for a dela:.r of n elock -::.n:les
5]
]
void read() [ ...
wodd weite() [ ...

]

bus.read (3 1
bz writ=(); 1

neding MY inplenents 3laveBarvice |
void read |
{5
oo {f neke request to Tine
veo ff for a neaccy read -ﬂeia:.r
5]
]

vodd write { ... ]

!

nediim BUS implessnts BusSerwice |
port Slavefarvice nen;

void read(] |

[5 {§ make request to Buséirb
coo 1 to become buz master
£l
men.readl];
1

void write() [ ...

1

men.write(1; |




i Metropolis: Mapping

= Mapping is defined by a new network to
encapsulate the functional and
architectural networks and relating the
two by synchronizing events between
them.



iMetropoIis: Mapping

process X process Task || process Task | | process Task
name PO name T1 name T2 name T3

(-manager
Cpudrh

{-manager
BusArh

process X o
name G

process X
T name P

(-manager
Energy

congtraint{ 1tl G{ beg(PD, M.write] -* lheg(Pl, M.write) U end (PO, M.write) && :
beg(Fl, M.write] -* lbeg (PO, M.write] U end(F1, M.write)); ] medium

BUS

congtraint { 1tl G beg(PO,PO.foo) €-3beg(T1,CPU. axecite (50} &&
ard (FO,P0. foo) £-2and (T, CPU. mxmcirte= (50) ) &&
beg (PO, H.write] 4-*beg(T1,CP0.write] &&

(-manager
Time

end (F1,P1.Fan) {-dend (T2, CPU. execute(50)) &

end (G, C. £on) {-Yend (T3,CP. execute (50)) &
G




	A Model Based Approach to Design Applications for Network Processor
	Roadmap
	Scenario
	Different Solutions
	What is a Network Processor?
	Relations Among Solutions
	ASIC vs. NP
	NP vs. Outdoor World
	A Generic Network Processor
	NP Philosophy
	Programming an NP
	Summarizing
	Model Based Development
	Abstract Syntax Systems Compared
	Model Transformations
	MBD: Top Down Approach
	MBD: An Horizontal Refinement
	What Do We Propose ?!?
	How Can You Do It ?!?
	Y-Model for NP Applications
	Dynamic Aspects
	Future Works
	Conclusions
	References
	Metropolis: Functionalities
	Metropolis: Platform
	Metropolis: Mapping
	Metropolis: Mapping

