
Automating mapping 
of functional blocks 
to real-time tasks
Bartolini Cesare
Scuola Superiore Sant’Anna



Embedded systems

Low cost and time to market
Design should be fast and simple
Reutilization of components

Efficiency
Real-time support
Resource management support



Real-time support

Often, embedded systems are real-time
Non-functional issues must be introduced

Scheduler
Tasks
Priorities
…

“Non-functional” is referred to something the 
user need not know



Platform-based design

Behavior

design

Architecture

design

Mapping

Analysis 

Implementation 



Design process

Behavior
“What the system does”
Assumes infinite resources
Independent of underlying platform

Architecture
“What the system can use top run the behavior”
Hardware: physical components
Software: scheduler, tasks

Behavior and architecture are independent of 
each other



Design process (2)

Mapping
The behavior is mapped over the architecture
Each behavior component is tied to an architecture 
component

This defines how that specific function is run

Testing and simulation
Performance must be evaluated

The system scheduling must be feasible
Additional metrics: memory occupation, processor utilization



Addressed problem

Mapping is done manually
Arbitrary choices

Task creation (mapping functionality to tasks)
Task properties

Scarce optimization
An automated method might help

Finding optimal solution, if possible
Reducing the number of possible mappings



A single task

The whole system might be a single task
Advantages

No context changes
No scheduling overhead
No task descriptors (low memory occupation)

Drawbacks
No concurrency
System deadlines cannot be addressed



One task per function

Every function might be a task per se
Advantages

Total concurrency
Maximum flexibility and reactivity

Drawbacks
Too many context changes
Excessive scheduling overhead
Task descriptors become a burden



Goals of this research

Define a method to automate at least part of the 
mapping process

Search for a suitable trade-off between the two 
extremes
The designer might review and modify it later

Create a schedulable task set in a dynamic 
priority system

Fixed priorities might be used instead
Allow the designer to focus on the behavior



Model of execution

DAG (directed Acyclic Graph)
A vertex is a function (behavior component)
An edge is a communication between functions

Edges carry signals, data are not accounted for
The control path is referred to, not the data path

A path is an end-to-end sequence of edges and 
vertices
Asynchronous model

The base element is the function, not the task



Behavior model

Parallelism
These two functions
might run
concurrently

Function
When activated by a
signal, it processes
the input and then
produces its output

Signal
Activates functions
imposing precedence
relations

Event
Signal generated
by the external
environment



Automated mapping

The objective is to generate a schedulable 
task set from the application structure
End-to-end deadlines are required, whilst 
function WCETs are not
A preemptive EDF scheduler is used



Three-step methodology
Task partitioning: defines the set of tasks composing the 
system

Simple partitioning
Joined partitioning

Deadline assignment: rules for assigning the task 
properties

Full deadlines
Rising deadlines

Activation semantics: specifies when a task is activated
Early activation
Late activation



Possible combinations

LA
EA

Simple

Joined

RD FD



Main problems

Large task set
The full methodology is heavy

Usage can be excessively burdening in an 
embedded system (large overhead)

There are several degrees of 
simplification, with some performance loss

Small restrictions greatly reduce the overhead



Features

Provides a basis for generating a task set
Optimal solution

Feasibility
Preemptions

Flexibility
Can be extended in any of the three dimensions

Actually, they are not orthogonal

Feasibility tests are available



Tools

Pethra
Development framework

RealDes
Used to generate a directed acyclic graph 
(DAG)

RTSim
Task set simulator



Current status

Pethra module, used to export a DAG 
(created with RealDes)
RTSim expansion, to convert the DAG into 
a task set

The task set properties must be selected
Automatic random DAG generation
Simulations, preliminary comparisons



Current status (2)

RTSim

Simulator

Converter

JTracer

Pethra

Pethra
XML

RealDes

RTSim
Exporter

DAG 
structures

User



Work in Pethra
RealDes Pethra XML

C++ (RTSim)

Gen. casuale Exporter

DAG

PethraExporter PethraImporter



Work in RTSim

Created task models suitable for the 
algorithms of the methodology
Implementation of the three phases

Any combination can be used in simulation



Example - Modeling



Example – Task set (Joined)

Task 1
Task 2

Task 3
Task 4



Example – Simulation (RD + LA)



aal2dr



aal2dr (2)



aal2dr (3)



Conclusions and future work

Reduce the task set
Different algorithms for task partitioning
Requires resource management policies (like PCP or SRP)

Exploration of “and” semantics
Extend the model of execution

RealDes must be extended, too
XML
Optimization (branch & bound, genetic algorithms)
Advanced architectures

Multi-processor or distributed systems


	Automating mapping of functional blocks to real-time tasks
	Embedded systems
	Real-time support
	Platform-based design
	Design process
	Design process (2)
	Addressed problem
	A single task
	One task per function
	Goals of this research
	Model of execution
	Behavior model
	Automated mapping
	Three-step methodology
	Possible combinations
	Main problems
	Features
	Tools
	Current status
	Current status (2)
	Work in Pethra
	Work in RTSim
	Example - Modeling
	Example – Task set (Joined)
	Example – Simulation (RD + LA)
	aal2dr
	aal2dr (2)
	aal2dr (3)
	Conclusions and future work

