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Abstract. Broadcasting is an efficient and scalable way of transmgittlata over
wireless channels to an unlimited number of clients. In g@per the problem of
allocating data to multiple channels is studied, assumigdéta scheduling per
channel and the presence of unrecoverable channel trasismesrors. The objec-
tive is that of minimizing the average expected delay exgmeed by the clients.
Two different channel error models are considered: the @dlinmodel and the
simplified Gilbert-Elliot one. In the former model, each keictransmission has the
same probability to fail and each transmission error is petelent from the oth-
ers. In the latter one, bursts of erroneous or error-freggigcansmissions due to
wireless fading channels are modeled. For both channelmadels, optimal solu-
tions can be found in polynomial time when all data items haviélengths, while
heuristics are presented when data items have non-unihienigxtensive simula-
tions, performed on benchmarks whose item popularitideviaZipf distributions,
show that good sub-optimal solutions are found.
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Introduction

In wireless asymmetric communicationsita broadcastings an efficient way of simul-
taneously disseminating data items to a large number aftsl{@d 7]. Consider data ser-
vices on cellular networks, such as stock quotes, weatfes,itraffic news, where data
are continuously broadcast to clients that may desire theanyainstant of time. In this
scenario, a server at the base-station repeatedly trasdaté items from a given set over
wireless channels, while clients passively listen to trereti channels waiting for their
desired item. The server has to pursue a data allocatiolegyréor assigning items to
channels and a broadcast schedule for deciding which itartoHae transmitted on each
channel at any time instant. Therefore, efficient data atioo and broadcast scheduling
algorithms have to minimize the client expected delay,ig)dhe average amount of time
spent by a client before receiving the item he needs. Suclag thereases with the size
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of the set of the data items to be transmitted by the servéedd, the client has to wait
for many unwanted data before receiving his own data. Maedkie client expected
delay may be influenced by transmission errors because #eengot always received
correctly by the client. Although data are usually encodsidgierror correcting codes
(ECC)allowing some recoverable errors to be corrected by thatolidthout affecting
the average expected delay, there are several transmisians which still cannot be
corrected using ECC. Sucimrecoverablerrors affect the client expected delay, because
the resulting corrupted items have to be discarded and iy chust wait until the same
item is broadcast again by the server.

Several variants for the problem of data allocation and dcaeat scheduling have
been proposed in the literature [1,2,3,4,5,6,9,10,115,36,19,21,22].

The database community usually partitions the data amomghhnnels and then
adopts dlat broadcast schedule on each channel [5,15,22]. In such aleagllocation
of data to channels becomes critical for reducing the aeeexgected delay, while the
flat schedule on each channel merely consists in cyclicathadbcasting in an arbitrary
fixed order, that is once at a time in a round-robin fashios,itams assigned to the
same channel [1]. In order to reduce the average expectay dskewedlata allocation
is used where items are partitioned according to their ojiids so that the most re-
quested items appear in a channel with shorter period. Aisgutmat each item transmit-
ted by the server is always received correctly by the cl@splution that minimizes the
average expected delay can be found in polynomial time icélse ofunit lengthq22],
that is when all the items have a unit transmission time, e&&the problem becomes
computationally intractable for non-unit lengths [5]. g latter case, several heuris-
tics have been developed in [4,22], which have been teststme benchmarks where
item popularities follow Zipf distributions. Such distutions are used to characterize
the popularity of one item among a set of similar data, likeedo\ywage in a web site [8].

The data allocation problem has not been investigated bydkasbase community
when the wireless channels are subject to transmissiorsetrocontrast, a wireless en-
vironment subject to errors has been considered by the nidtvgocommunity, which
however concentrates only on finding broadcast schedubing §ingle channel to min-
imize the average expected delay [6,10,11,19]. Indeedpéieorking community as-
sumes all items replicated over all channels, and theref@data allocation to the chan-
nels is needed. Although it is still unknown whether a br@astischedule on a single
channel with minimum average delay can be found in polynbtiniee or not, almost all
the proposed solutions follow treguare root rule (SRR heuristic which in practice
finds near-optimal schedules [3]. The aim of SRR is to produbeoadcast schedule
where each data item appears with equally spaced replitessarfrequency is propor-
tional to the square root of its popularity and inverselygandional to the square root
of its length. In particular, the solution proposed by [183pts the SRR solution to the
case of unrecoverable errors. In such a case, since cadritptes must be discarded
worsening the average expected delay, the spacing amotigaepas to be properly
recomputed.

The present paper considers the data allocation problererithd assumption of
flat data schedule per channel [4,5,22], as studied by ttebda¢ community, but also
copes with the presence of unrecoverable erroneous trasiems, as studied in [7,19].
The behavior of wireless channels is described by meansmflifferent error models:
the Bernoulli model and the simplified Gilbert-Elliot oned]2In the former each packet



transmission has the same probabijitg fail and1 —q to succeed, and each transmission
error is independent from the others. In contrast, therlattelel is able to capture bursti-
ness, that is sequences of erroneous or error-free paakettissions, and well approxi-
mates the error characteristics of certain wireless fadiramnnels [18]. For both channel
error models, it is shown that an optimum solution, namely minimizing the average
expected delay, can be found in polynomial time for the ddtecaion problem when
the data items have unit lengths. Instead, sub-optimatisakifound by heuristic algo-
rithms are exhibited for both channel error models and iteuitis non-unit lengths. Ex-
tensive simulations show that such heuristics provide gaddoptimal solutions when
tested on benchmarks whose items popularities are cheractdy Zipf distributions.
Moreover, it is proved that optimal solutions can be foung$eudo-polynomial time
when there are only two channels, the items have non-unithen and the Bernoulli
channel error model is used.

The rest of this paper is so organized. Section 1 first givéatioms, definitions as
well as the problem statement, and then reviews the basicitidms known so far in
the case of error-free channel transmissions. Sectiond 3 aonsider the Bernoulli and
the Gilbert-Elliot channel error model, respectively, dlastrate how the previously
reviewed algorithms can be adapted to cope with erroneansrtrissions. Experimental
evaluations of the algorithms are reported at the end of Betttions 2 and 3. Finally,
conclusions are offered in Section 4.

1. Error-FreeChannels

Consider a set ok identical error-free channels, and a #et= {d;,ds,...,dny} Of N
data items. Each item, is characterized by popularityp; and aengthz;, with 1 < ¢ <
N. The popularityp; represents the demand probability of itdmnamely its probability
to be requested by the clients, and it does not vary alongrttee Clearly,zij\ilpi =1.
The lengthz; is an integer number, counting how many packets are reqtorgensmit
item d; on any channel and it includes the encoding of the item witkeraor correcting
code. For the sake of simplicity, it is assumed that a packesmission requires one
time unit. Eachd; is assumed to be non preemptive, that is, its transmissionatde
interrupted. When all data lengths are equal to one,4;e= 1 for1 < ¢ < N, the
lengths are callednit lengths, otherwise they are said to@n-unitlengths. The sum
of all the item lengths and the maximum item length are dehatspectively, by and
z, namelyZ = Zi\il z; andz = maz1<i<n 2.

The expected delay; is the expected number of packets a client must wait for re-
ceiving itemd;. Theaverage expected deldyl ED) is the number of packets a client
must wait on the average for receiving any item, and is coetpas the sum over all
items of their expected delay multiplied by their popubgrihat is

N
AED =) tip; (1)
=1
When the items are partitioned inf6 groupsG., . . . , G, where grougzy, collects the

data items assigned to chanieland a flat schedule is adopted for each channel, that
is, the items inG, are cyclically broadcast in an arbitrary fixed order, Equatl can



be simplified. Indeed, if itemd; is assigned to channg| and assuming that clients can
start to listen at any instant of time with the same probghbifent; becomesZQ—k, where
Zy, is the schedulgeriodon channek, i.e., Zy = >, ., #- Then, Equation 1 can be
rewritten as

N K 7, K Zi 1 K
AED:Z;tipizz > 7p¢=2<7 > pi) =§;kak (@)

k=1d;eGy k=1 d;€Gy

where P, denotes the sum of the popularities of the items assignetiaonelk, i.e.,
P, = Zdieck p;. Note that, in the unit length case, the perigg coincides with the
cardinality of Gy, which will be denoted byVy.

Summarizing, giverK error-free channels, a sé of N items, where each data
item d; comes along with its popularity; and its integer length;, the Data Allocation
Problemconsists in partitioning) into K groupsGy, ..., Gk, SO as to minimize the
AED objective function given in Equation 2. Note that, in #pecial case of unit lengths,
the corresponding objective function is derived replaciigvith N in Equation 2.

Almost all the algorithms proposed so far for the data aliocgoroblem on multiple
error-free channels are based on dynamic programming. 8lgciithms restrict the
search for the solutions to the so calleeggmentationghat is, partitions obtained by
considering the items ordered by their indices, and by asgigtems with consecutive
indices to each channel. Formally, a segmentation is atipartif the ordered sequence

dy,...,dyinto K adjacentsegmené€s, , . . . , G, each of consecutive items, as follows:
d17"'adBl7dB1+1)'"7dea'"adBK71+1)"'7dN
G1 G2 GK

A segmentation can be compactly denoted by(tkie- 1)-tuple
(Bl, BQ, ey BK—l)

of its right borders where bordeiB;, is the index of the last item that belongs to group
Gr. Notice that it is not necessary to speciBy,, the index of the last item of the last
group, because its value will b€ for any segmentation.
Almost all the dynamic programming algorithms for multigleannels assume that

the itemsdy, ds, . ..,dN are indexed by non-increasir% ratios, that is% > ’Z’—z >

- > ’Z’—g Observe that for unit lengths this means that the items @nted by non-
increasing popularities. L&tO L;, ,, denote a segmentation for grouping itess. . . d,,
into k£ groups and lekol;, ,, be its corresponding cost, for aty < K andn < N.
Moreover, letC; ; denote the cost of assigning to a single channel the corigedeims
di, ey dj:

J J J J J
Cij =Y taph =Y (% Zzh) ph = % (Z Zh) (Zm) 3)
h=i h=i h=i h=i

h=t

For unit lengths, the above formula simplifies@s; = 2(j — i + 1) i:i pr. Note
that, once the items are sorted, all #fig;'s can be found irD(V) time by means of
prefix-sum computations [21].



The five main algorithms for solving the problem are now byisilirveyed. The
first three of them, calle®P, Dichotomic andDlinear, assume items sorted by non-
increasing®’s (and thus they search for segmentations) and work for litrary num-
ber of channels. Whereas, the other two, caledpsackandSRR do not assume sorted
items and work for two channels and one channel, respegtilie first four algorithms
are off-line and employ dynamic programming, while the Egorithm is on-line and
does not use dynamic programming.

1.1. The DP Algorithm

The DP algorithm is a dynamic programming implementationhef following recur-
rence, wheré varies froml to K and, for each fixe&, n varies froml to N:

solg. n = Clin k=1 (4)
kn = minlgggn_l{SOZk_l,é + Cg+1,n} ifk>1

For any value of andn, the DP algorithm selects the best segmentation obtained by
considering then — 1 segmentations already computed for the fitgst 1 channels
and for the first/ items, and by combining each of them with the cost of assgnin
the lastn — ¢ items to the singlé-th channel. In details, consider thé x N ma-
trix M with My, ,, = soly . The entries of\/ are computed row by row applying Re-
currence 4. ClearlyM i y contains the cost of a solution for the original problem. In
order to actually construct the corresponding segmemtaticscecond matri¥’ is em-
ployed to keep track of the final borders of segmentationsesponding to entries of
M. In Recurrence 4, the value 6fvhich minimizes the right-hand-side is tfieal bor-

der for the solutionSOLy,,, and is stored irFy, ,,. Hence, the segmentation is given by
SOLkg N = (Bi1,Ba,...,Bk_1) where, starting fronBx = N, the value ofBj, is
equal tofy41,8,,,, fork = K —1,...,1. The DP algorithm require9(N?K) time. It
finds an optimal solution in the case of unit lengths and acptimal one in the case of
non-unit lengths [22].

1.2. The Dichotomic Algorithm

To improve on the time complexity of the DP algorithm, the itomic algorithm has
been devised. LeB}’ denote thé:-th border ofSOLy, ,,, with k > h > 1. Assume that
SOL_1., has been found for every < n < N. If SOLy,; and SOLy , have been
found for somel <1 < r < N, then one knows thaB;_, is between! | andB;_,
foranyl < ¢ < r. Thus, choosing as the middle point betwedrandr, Recurrence 4
can be rewritten as:

solkw%r] = B,lﬁlrgnenngT {solk_1,0 + CHLV%W} (5)

k—1
WhereB,{u,f1 andBj _, are, respectively, the final borders$® L ; andSOLy, ..

Such a recurrence is iteratively solved within three nelsteds which vary, respec-
tively, in the ranged < k < K,1 <t < [logN], and1 < i < 2'~!, and where
the indiced, r, andc are set as follows: = [Z=5 (N + 1)], 7 = [ (N + 1)], and

c=[B] = [Z2L(N +1)]. In details, the Dichotomic algorithm is shown in Figure 1.




Input: N items sorted by non—increasir&; ratios, andK’ groups;
Initialize: forifromlto N do
for kfromlto K do
if k=1then My ; — Cy ; el se My, ; — oo;

Loop 1: for kfrom2to K do

Fro+ Fr1+— 1, Fyny1 < N,
Loop 2: for tfromlto [logN|do
Loop 3: forifromito2t—!do

c— [N +1)T;
L[ (N +1)T;
T |—2ti71 (N+1)T;
if My,.=oothen
Loop 4: for £fromFy;to Fy , do
if Mi_1,6+4+ Cri1,c < My, then
Mg,c — Mg—1,0+ Cot1,c;
Fre— 6

Figurel. The Dichotomic algorithm.

It uses the two matrice®/ andF’, whose entries are again filled up row by row (Loop 1).
A generic rowk is filled in stages (Loop 2). Each stage corresponds to acpéativalue
of the variablet (Loop 3). The variable: corresponds to the index of the entry which
is currently being filled in stage The variableg (left) andr (right) correspond to the
indices of the entries nearestdavhich have been already filled, with< ¢ < r. If no
entry beforec has been already filled, thén= 1, and therefore the final bordét; ; is
initialized to1. If no entry afterc has been filled, then = N, and thus the final border
F,, N1 isinitialized toN. To compute the entry, the variable takes all values between
F,; andFy, .. The index/ which minimizes the recurrence in Loop 4 is assignefiio,
while the corresponding minimum value is assigned#g..

The Dichotomic algorithm lowers the time complexity of thdé lgorithm to
O(NK log N). As for the DP algorithm, the Dichotomic algorithm also firmstimal
and sub-optimal solutions for unit and non-unit lengthspestively [5].

1.3. The Dlinear Algorithm

Fixed k andn, the Dlinear algorithm selects the feasible segmentativaissatisfy the
following Recurrence:

e if k=1
S0l = {solklym + Cmprnifk>1 ()

where

m= min {€ :solk—10+ Cos1,n < S0lg—1,041 + Cryon} -
B~ '<e<n-1



Input: N items sorted by non-increasirlg ratios, andK’ groups;
Initialize: for nfromlto N do ’

Ml,n — Cl,n;
Loop 1: for kfrom2to K do

Fer—k—-1,

Mgk — Mg_15-1+ Ci k;

Loop 2: for nfromk+1to Ndo

£ Fk,nfl;

m «— ¥,

Mp.n — Mg_16+ Cry1,n;
incr — f al se;

Loop 3: while?¢ <n-—2and —incrdo
tempe— Mg_1.¢041 + Coy2.n;
if My, >temp then

Mk,n «— temp
{—0+1;
el se
incr — true;
m «— ¥,
Fip —m

Figure2. The Dlinear algorithm.

In practice, Dlinear adapts Recurrence 4 by exploiting tteperty that, ifSOLy, ,,—1 is
known, then one knows thd;! is no smaller tharB}j‘l, and by stopping the trials as
soon as the cosbly_1 ¢ + Ci+1,, Of the solution starts to increase.

The Dlinear algorithm is shown in Figure 2. As before, maisit/ andF’ are used,
which are filled row by row. Note that in Loop 1 the leftmdst- 1 entries in rowk
of both M and F' are meaningless, since at least one item has to be assigeadho
channel. The value of: in Recurrence 6 that gived, ,, is computed iteratively in Loop
3 and stored irFy, ,,.

The overall time complexity of the Dlinear algorithm@ N (K + log N)). Thus
the Dlinear algorithm is even faster than the Dichotomic dthe solutions it provides
are always sub-optimal, both in the unit and non-unit lergite [4].

1.4. The Knapsack Algorithm

The Knapsack algorithm solves the problem when there aretlgxachannels. In such
a case, the problem is to find a partitiGh andG5 such tha% (Z1 Py + Z5P) is min-
imized, whereP,, and Z;, denote the sum of the popularities and of the lengths, respec
tively, of items inGy, for k = 1 and2. Clearly, P, + P, = 1 andZ; + Z, = Z. Without
loss of generalityZ; < Z, can be assumed, and hence there are pAJi2| possible
values forZ;.

Observe tha| P, + Zo Py = Z1 P + Zg(l — Pl) = Pl(Zl — Zg) + Zs. WhenZ;
is fixed, alsoZ, = Z — Z; is fixed, and noting thaZ; — Z5 < 0, minimizing Z; P, +
Z5 P, is equivalent to maximizing®;. Therefore, the problem reduces to a particular
Knapsack problenfil4] of capacityZ;, where each iterd; is characterized by profit
p; and aweight z;. Specifically, the Knapsack problem consists in finding asetiB



of {di,ds,...,dn} subject to the constraiﬁgdkes 2z = Z; SO as to maximize the
objective functiord _; ¢ pr.-

To apply dynam|c programming, consider té&¥ + 1) x (| Z/2] + 1) matricesM
andX. The entryM; ;, with 0 < ¢ < N and0 < j < LZ/QJ stores the value of the
objective function for the above Knapsack problem with sdih, . . . , d; } and capacity
j. Formally,M; ; = max ), -gp suchthad , .2k =, WhereS C{dy,...,d;}.
By definition, M; ; = —oo if ‘the capacityj cannot be completely filled by any. The
boolean entryX; ; records whether the ited) has been selected or not in the solution
of the Knapsack problem with itemgly, . . ., d; } and capacityj, with 0 < ¢ < N and
0<j5<12/2].

The dynamic programming algorithm starts by initializihg ffirst row of the matri-
ces in such away thadtly o = 0, My ; = —ooforl < j < |Z/2], andX, ; = false
for0 <j < |Z/2|.Then,fori=1,2,...,Nandj =0,1,...,|Z/2|, M, ; andX; ;
are filled by using the following relations:

_ I M if j <z
Mij = {maX{JV[il,j7 My j ., +pi} if j2>2 ")

. _ | true if M;;=M; 1, ., +pi#—00
hJ false otherwise

Note that it is possible that for certain valuesjofvith 0 < j < | Z/2], there is no
solution for items{ds, ..., d;} such that the total sum of weights is exactlyin such
cases, according to the definition, Recurrence 7 gilgs = —oo. In contrast, if there
is a solution for itemddy, ..., d;} such that the total sum of weights is exactlythen
M; ; # —oo andM; ; gives the optimal value of the objective function.

Consider the last row al/. Any entry My ; 7é —oo gives the optimalP; for the
2-channel data allocation problem with itefi;, . .., dy } andZ; = j. Therefore, the
entry, sayM -, which minimizes; (jM -+ (Z—-5)(1 - MNJ)) gives the optimal
AED for the or|g|nal problem. Once/ has been found, it is easy to list out the items
which have been plcked up in the optlmal solution, by tradiagk the solution path.
Specifically, if Xy = = true, then itemdy is selected and the entdy, ;5 . is
examined next; |fX ~ 7 = false, then itemdy is not selected and the entfy_, - is
examined next. Such a procedure is repeated backwardshentdw0 of X is reached.
The selected items are assigned to gréypwhile the remaining items are assigned to
groupGs.

The Knapsack algorithm always finds an optimal solutioniar thannels and non-
unit lengths and its overall time complexity@& N Z), which is pseudo-polynomial [5].
The algorithm is effective when the items have small lengtir.instance, if each item
length is bounded by a constant, thér= O(N) and the overall time becoméX N?).

1.5. The SRR Algorithm

When there is only one channel, the DP, Dichotomic, and Rlirsdgorithms provide a
trivial flat schedule with period. In such a case, eac¢his equal tog and hence also
the AED is equal to%, regardless of the item popularities. To overcome this teak,



a schedule is needed where the spacing between two convgetatismissions of one
item is not the same for all items, but depends on both thelpdpuand the length of
such an item.

It has been shown in [19] that, in an optimal schedule, raplaf any itemi; should
be equally spaced with spacing

N
5 = \/—z> il (8)

In this way, the expected delay for itedn becomes half of its spacing and thus, substi-
tuting¢; = 3 in Equation 1, the average expected delay becomes

1 (& ’
AED = 7 (; W) €)

The AED value given in Equation 9 represents a lower boundhvii general is
not achievable because the replicas cannot always be keptlegpaced. The SRR
algorithm is an on-line heuristic which tries to keep thelicgs as equally spaced as
possible. For this purpose, it determines the item to bestréted next by using the
decision rule“% = constant, based on Equation 8. etlenote the current time, Ié&;
be the time at which the last replicadfhas been transmitted (initialized tol), and let
G, = (T - Ri)Q%, whereT — R; is the spacing for iterd; if d; would be transmitted
again at timer". At each instant of tim@", the SRR algorithm evaluates the decision rule
G, for all itemsd;, 1 < 7 < N, selects for transmission at tine that itemd;, with
maximumGy, and finally update®;, = T andT = T + zj.

The SRR algorithm take® (V) time to select the item to be transmitted. Such a
time can be reduced ©(M) by partitioning the items intd/ buckets according to their
G's values [19].

2. Bernoulli Channeél Error M odel

In this section, unrecoverable channel transmission@madeled by a geometric distri-
bution are taken into account. Under such an error modeh, packet transmission over
every channel has the same probabilitio fail and1 — ¢ to succeed, and each trans-
mission error is independent from the others, Witk ¢ < 1. Since the environment is
asymmetric, a client cannot ask the server to immediatetgmemit an itemd; which
has been received on chaneWith an unrecoverable error. Indeed, the client has to
discard the item and then has to wait for a whole pedduntil the next transmission
of d; scheduled by the server. Even the next item transmissidd beLcorrupted, and in
such a case an additional delay4f has to be waited. Therefore, the expected dejay
has to take into account the extra waiting time due to a plessdguence of independent
unrecoverable errors.



2.1. Unit Length Items

Assume that the items have unit lengths, i.= 1 for 1 < i < N. Recall that in
such a case the period of chankéak Ny. If a client wants to receive itend;, which is
transmitted on channél, and the first transmission he can heatipfs error-free, then
the client waits on the averadéE time units with probabilityl — ¢. Instead, if the first
transmission ofi; is erroneous, but the second one is error-free, then thet digeri-
ences an average delay%£ + Ny time units with probabilityy(1 — ¢). Generalizing,

if there areh bad transmissions af; followed by a good one, the client average delay
for receiving itemd; becomes% + h.N}, time units with probability;” (1 — ¢). Thus,
summing up over alk, the expected delay is equal to

S -9 - 2w,
h=0

becausé ;- ,¢" = ﬁ and ;- hg" = iz - Therefore, one can set the expected
delay as

ti=—T— (10)

By the above setting, the objective function to be minimibedomes

o 11+g¢
AED = ; tipi = 31—q Z N P, (11)

Therefore, for items with unit lengths, the data allocapooblem can be optimally
solved in polynomial time. This derives from Lemmas 1 and 25bfwhich prove op-
timality in the particular case of error-free channelst iteawheng = 0. Indeed, when
g > 0, similar proofs hold once the coét; ; of assigning consecutive iterds, . . . , d;

to the same channel is defined@s; = =4+t }fg 4 _,Dn- In words, Lemmas 1 and
2 of [5] show that, whenever the iterds, dg, ..., dy are sorted by non-increasing pop-

ularities, there always exists an optimal solution which segmentation and which can
be found by the Dichotomic algorithm.

2.2. Non-Unit Length Items

Consider now items with non-unit lengths and recall thatis the period of channdil.
In order to receive an iterd; of length z; over channek, a client has to listen fog;
consecutive error-free packet transmissions, which happéth probability(1 — ¢)*.
Hence, the failure probability for itemy; on channek is Q,, =1 — (1 — ¢)*.

In the case that the first transmissiondpheard by the client is error-free, the client
has to wait on the averag?gi time units with probabilityl — Q... Instead, the client waits
on the average fof: + Z;, time units with probability)., (1 — @Q.,) in the case that the
first transmission ofl; is erroneous and the second one is error-free. In geretsd
transmissions of; followed by a good one lead to a delayéﬂf + hZ), time units with



probability Q" (1 — Q.,). Therefore, summing up over dllas seen in the unit length
case, the expected delay becomes

Zk 1+ Qz
L ZkZ T wa 12
=S (12)
Thus, the average expected delay to be minimized is
K

1 1+ Q.

AED = - Z .
3> (2 3 o) @)

k=1 dieGk °

Recalling that the items are indexed by non- mcrea@mgmos the new recurrences
for the Dichotomic and Dlinear algorithms are derived fromcRrrences 5 and 6, re-

spectively, once each; ; is defined ag’; ; = 1 ( {1 zzh) ( 2:1 % h). All
Zh

the C; ;'s can be computed i (V) time via preflx sums, onc®(H) time is spent for
computing all the®,,’s, whereH = min{N log z, z}. Therefore, the time complexi-
ties of the Dichotomic and Dlinear algorithms become, retpely, O(N K log N + H)

and O(N(K + log N) + H). Note that in such a case optimality is not guaranteed
since the problem is computationally intractable alreamtyefrror-free channels. How-
ever, when there are only two channels, an optimal solutonte found inO(NZ2)
time applying the Knapsack algorithm, simply replacingrepopularityp; with p; =

1+g“ p; in Recurrence 7, and then finally selecting the emtfy, > which minimizes

L (]MN3 +(Z )P - MNJ)) ,whereP’ = SN 1.
When there is only one channel, it has been shown in [19]ithat) optimal sched-
ule, replicas of any iter; should be equally spaced with spacing

N 1+QZ>\/Z-1Q.
S = DhZh h ol Zi (14)
<h¥1 1 - QZh pl 1 + QZ{,

Thus, substituting; = % in Equation 1, the average expected delay becomes

2

N
1 1+0.
AED = < (37 [pizs i 1
2 (i—l P in) e

Therefore, the SRR algorithm can be applied once the decisie G; is modified as

7.1+sz
Gi= (I~ R B

2.3. Performance Evaluation

In this subsection, the behavior of the Dichotomic, Dlineard SRR heuristics is eval-
uated in the case of Bernoulli channel error model. The abty@ithms have been ex-
perimentally tested on benchmarks where the item popigsiibllow a Zipf distribu-
tion. Specifically, given the numbé¥ of items and a real numbér< 6 < 1, the item
popularities are defined as
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Figure 3. Results for2500 items of non-unit lengths, wheh = 0.8 and theK channels have failure proba-
bility ¢ = 0.001.

(1/1)°

= 1<i<N

S (1/h)? -

In the above formul&] is the skewparameter. In particula#, = 0 stands for a uniform
distribution withp; = % while a highe® implies a higher skew, namely the difference
among thep; values becomes larger.

Consider first some experiments for multiple channels tegofrom [7], where
either the skew parametér is set t00.8 as suggested in [22]N = 2500, and
10 < K <500,0r6 = 0.8, K = 50, and500 < N < 2500,0r0 < 6 <1, N = 2500,
and K = 200. The item lengthg; are integers randomly generated according to a uni-
form distribution in the rangeé < z; < 10, for 1 < i < N. The channel failure proba-
bilities can assume the value$)01 and0.01.

Moreover, since the data allocation problem is computatigrintractable when
items have non-unit lengths, lower bounds for a non-unitleinstance are derived by
transforming it into a unit length instance as follows. Eéem d; of popularityp; and
lengthz; is decomposed inte; items of popularltyp— and lengthl. Since more freedom
has been introduced, it is clear that the optimal AED for theansformed problem is a
lower bound on the AED of the original problem. Since the$farmed problem has unit
lengths, the optimal AED can be obtained by running the patyial time Dichotomic
algorithm both when all the channels are error-free or hagesame failure probability.

Figures 2.3-5 show the experimental results for the Diamdtaand Dlinear algo-
rithms in the case that there are multiple channels, thesiteawe non-unit lengths, and
the failure probabilityg is 0.001. One can note that the two above mentioned lower
bounds as well as the solutions provided by both algorithm®st coincide. Instead,
Figures 6-8 show the experimental results when the failuwbability ¢ is 0.01. Refer-
ring to Figures 6 and 7, whete= 0.8, the AED of the transformed unit length instance
in the presence of errors ﬁ% = 1.02 times the AED of the same transformed instance
without errors. One can also note that, since the averagedegth is5, the AED of the
original instance in the presence of errors should be a%gb%t: 1.10times the AED of

the same original instance in the absence of errors, wferel — (1 — 0.01)®> = 0.05.
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Figure4. Results forV items of non-unit lengths, wheh= 0.8 and the50 channels have failure probability
g = 0.001.

N =2500, K =200, g = 0.001

Lower Bound without error —+—
32 F - Dichotomic without error ---x---
~. Dlinear without error ---*---
-~ Lower Bound with error &
30 F Dichotomic with error ---m-—
\ Dlinear with error ---&---

AED

Figure 5. Results for2500 items of non-unit lengths, whet < 6 < 1 and the200 channels have failure
probability g = 0.001.

This can be easily checked in Figure 6, e.g.,for= 10, where the ratio between the
two AEDs is abou% = 1.11. Referring to Figure 8, whervaries, one notes that the
ratio between such AEDs is almost 1.12 for every valué,afonfirming the results of
Figures 6 and 7.

Consider now some simulation experiments for a single chlamrnich are reported
from [19]. In the experimentsy = 1000, 0 < # < 1, and each; is an integer randomly
generated according to a uniform distribution in the rahgé z; < 10, for1 <i < N.
The channel failure probability varies betweef and0.2. Figure 9 shows the behavior
of the SRR algorithm compared with the analytical lower bbgiven in Equation 15.
The experimental tests show that the AED values obtainetld$RR algorithm and by
the lower bound differ up t8% for small values of;, and up tol0% for larger values of

q.
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Figure 6. Results for2500 items of non-unit lengths, wheth = 0.8 and theK channels have failure proba-
bility ¢ = 0.01.
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Figure 7. Results forN items of non-unit lengths, wheh= 0.8 and the50 channels have failure probability
q = 0.01.

3. Gilbert-Elliot Channel Error Model

In this section, the channel error behavior is assumed lmA@ simplified Gilbert-Elliot
model, which is a two-state time-homogeneous discrete kifaegkov chain [20], as de-
scribed below. At each time instant, a channel can be in one@f&tates. The state
denotes thgoodstate, where the channel works properly and thus a packeté&ved
with no errors. Instead, the statalenotes thdadstate, where the channel is subject to
failure and hence a packet is received with an unrecovembte Let Xy, X1, Xo, ...

be the states of the channel at tinfes, 2, . . .. The time betweelX,, and X, corre-
sponds to the length of one packet. The initial sféids selected randomly. As depicted
in Figure 10, the probability of transition from the goodtstéo the bad one is denoted
by b, while that from the bad state to the good oneg.islence,1 — b and1 — g are the
probabilities of remaining in the same state, namely, ingbed and bad state, respec-
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Figure 8. Results for2500 items of non-unit lengths, whelh < 6 < 1 and the200 channels have failure
probability g = 0.01.
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Figure 9. Results forl000 items with non-unit lengths, wheR = 1,0 < 8 < 1,and0 < g < 0.2.

Figure 10. The Gilbert-Elliot channel error model.

tively. Formally, Prob[X,+1 = 0/X, = 0] = 1 — b, Prob[X,+1 = 0|X, = 1] = g,
Prob[X,+1 =1|X, =1]=1-g,andProb[X,+1 = 1|X, =0] =b.
It is well known that thesteady-stat@robability of being in the good state i%; =

542, while that of being in the bad state I3 = y{. This Markovian process has



meanu = Pg, varianceo? = u(1 — pu) = (bi—%)% and autocorrelation functior(v) =
Pp+(1—Pp)(1-b—g)¥, whereb+g < 1is assumed. Since the system is memoryless,
the state holding times are geometrically distributed. fifean state holding times for
the good state and the bad state are, respecti%/eiyl,dé. This means that the channel

exhibits error bursts of consecutive ones whose mean Iés@thseparated by gaps of
consecutive zeros whose mean length.is

3.1. Unit Length Items

Assume that the items have unit lengths, ize = 1 for 1 < i < N. Recall that in such
a case the period of chanrieis Ny.

If a client waits for itemd; on channek, and no error occurs in the first transmission
of d;, then the client waits on the avera@ié time units with probabilityP; = 1 —
Pg. Instead, if an error occurs during the first transmissiod;cdind there is no error
in the second transmission, then the average delay expeddy the client is% +
Ny, time units with probabilityPg (1 — r(N)). In general, when there afeerroneous
transmissions of; followed by an error-free one, the client average dela%sqL hN}.
time units with probabilityPs (r( Ny, )"~ (1—r(Ny,)). Thus, the expected delay is equal
to

N pi ot Poft = (i) % 4 N (V) =

Ny, Ng
—P, P, P,
p fe B T BTN
becaus& ;> | (r(Ni))" ™t = — 7(Nk) and> ;2 h(r(Ng))"—1 = m Hence,
the expected delay and the objective function AED become, respectlvefy
N 2Pp
ti=—(1+—Fr 16
2 <+1_T(Nk)> (16)

AED = %XK: <N,c <1 + > > p1> (17)

k=1 d;,€Gy

It has been proved that, since all the items have unit lerigére always exists an
optimal solution which is a segmentation. Moreover, suclolat®n can be found in
O(N?K) time by the DP algorithm, whose new recurrence is deriveth fRecurrence 4

by settingC; ; = =4 (1 + %) > i Phe

3.2. Non-Unit Length Items

This subsection deals with items of non-unit lengths. Rebalt 7, is the period of
channek and that a client has to listen foy consecutive error-free packet transmissions
in order to receive the itend; over channek.



Consider now the first transmission of itetnheard by a client. LePB(s) denote
the probability that in such a transmission théh packet is the first erroneous packet,
wherel < s < z;. Formally,

. [ Pg ifs=1
2o = { (" ppya s 2202 5

Consider now two consecutive transmissions of itgrheard by a client, the first of
which is erroneous. LePg (s, o) denote the probability that, in the second transmission,
the first erroneous packet is theh one given that in the previous transmission the first
erroneous packet was tleth one. Thus, whes = 1, Pg(1,0) = r(Z; + 1 — o),
whereas whefl < s < z;:

Pp(s,0)=(1—7(Zr+1—0))(1 —b)*2b

Finally, let P;(c) denote the probability that a whole transmissiondpfs error-free
given that in the previous transmissiondfthe first erroneous packet was theh one:

Polo)=(1—r(Zr+1-0))(1L—b)*"

Note that all thePz (s) andPg (s, o)’s can be computed in pseudo-polynomial time, that
is in a time polynomial in the parametersandz.

To evaluate the expected delay, observe that if the first transmission df
heard by the client is error-free, the client has to wait oa aalverage% time units
with probability (1 — Pg)(1 — b)*~L. Instead, the client waits on the average for
Zs + 7, time units with probability 7> _, Pg(s0)Pga(so) in the case that the first
transmission ofl; is erroneous and the second one is error-free. Moreoverpab
transmissions ofd; followed by a good one lead to a delay @ + 27 time

units with probability >°7 [PB(SO)Z“ pB(sl,so)pg(sl)] Thus, in general,

50:1 51:1

the expected delay i = Z:(1 — Pp)(1 — b)* 1 + >57, [(&: + i) 37

sp=1

[PB(SO) Zii:l pB(517 So) T Z:Lq:l [pB(Sh—h 5h—2)pG(5h—1)] e H}

Since finding a closed formula foy seems to be difficult, an approximati¢ifi of
the expected delay can be computed by truncating the abdes s¢ then-th term, for
a given constant valuer. Indeed, experimental tests show that the series convalges
ready for small values of:, as it will be checked in Subsection 3.3. Thus, the average ex
pected delay becomes AED Zf.vzl " p;. Recalling that the items are indexed by non-
increasing’: ratios, the Dichotomic and Dlinear algorithms can be apptiace each
C;,; is computed agfm. ty'pn. Fixedi andj, the time for computing’; ; is derived as
follows. Assuming a proper prefix-sum has been don@(itV) time as a preprocessing,
Zy = Zi:i zp, can be retrieved irD(1) time, while the computation of* requires
O(z}) time. Therefore, in the worst case, the computatio6'of takesO(Nz™) time,
and that of all the®; ;'s costsO(N?3z™) time, which is pseudo-polynomial. Hence, the
time for computing thePz(s)'s, Pg(s,0)’s, and C; ;'s leads to a pseudo-polynomial
time complexity for both the Dichotomic and Dlinear algbrnits.
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Figure1l. The AED behaviour versus the mean error burst length, when0.8, N = 2500, and K = 200.
3.3. Performance Evaluation

This subsection presents some experimental tests, taken[it], for the Dichotomic
and Dlinear heuristics in the case of the Gilbert-Elliotruhel error model (experiments
for the SRR heuristic are not available because it was sluzlidy under the Bernoulli
channel error model [19]).

In the experiments, the steady-state probabiltty of being in the bad state can
assume the valuegs001, 0.01, and0.1, while the mean error burst Iengf;his fixed to

10. Note that) is derived asylng oncePp andé are fixed. However, the choice %f

is not critical because the sensitivity of the AEDét(iJs low, as depicted in Figure 11, for
1< é < 130. Note that the choice of such an upper boundsl;fdrr not restrictive because
the probability of having a burst with lengthis g(1 — g)"~!, which is negligible as:
increases.

Since the algorithms take pseudo-polynomial time for iternitls non-unit lengths, a
restricted set of experiments is performed. In the expertsy¢he numbeK of channels
is set t050, the numberV of items varies betwees0 and2000, the item popularities
follow a Zipf distribution with# = 0.8, and the item lengths; are integers randomly
generated according to a uniform distribution in the rahge z; < 10,for1 <i < N.
The expected delay of iter) is evaluated by computing, that is truncating at the fifth
term the series giving. Indeed, as shown in Table 1 for = 10, Z; = 50, é =10,and

Pg = 0.01 and forz; = 5, Z, = 50, L = 10, andPs = 0.1, at the fifth term the series
giving t; is already stabilized up to t%e fourth decimal digit.

Since the data allocation problem is computationally table when items have
non-unit lengths, lower bounds for non-unit length instsare derived by transforming
them into unit length instances, as explained in Subse2t®rand by running the DP al-
gorithm. In particular, the AEDs giving the lower bounds abgained from Equation 17.

Figure 12 shows the experimental results for non-unit lesigthenPg, which is
identical for all channels, assumes the valdg®1, 0.01, and0.1. In such a figure,
lower bounds are shown for both error-free and error-prdramoels. One notes that,
for every value ofPg, the behavior of both the Dichotomic and Dlinear algorithms




Table 1. Values oft]* when: (a)z; = 10, Z = 50, % = 10, andPg = 0.01; and (b)z; = 5, Z} = 50,
+ =10,andPp = 0.16.

m tin m e

1 | 25.9150699 1 | 25.1989377
2 25.9382262 2 25.2537833
3 | 25.9388013 3 | 25.2689036
4 | 25.9388156 4 25.2730723
5 25.9388160 5 25.2745215
6 25.9388167 6 25.2745384

(a) (b)
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Figure 12. Results forN items with non-unit lengths, whefh = 0.8 and the50 channels have the same
steady-state probability’s, which assumes the valueg01, 0.01, and0.1.

identical. WhenPg = 0.001, both algorithms provide optimal solutions because their
AEDs almost coincide with the lower bound for channels witherrors. WhenPgz =
0.01, the AEDs of both the Dichotomic and Dlinear algorithms 826 larger than the
lower bound in presence of errors. In the last case, naifigly= 0.1, the AEDs found

by the algorithms are as large as twice those of the lower dbaupresence of errors.
However, such a value aPp represents an extremal case which should not arise in
practice (e.g. see [12]).

4. Conclusions

This paper considered the problem of allocating data toipielthannels, assuming flat
data scheduling per channel and the presence of unrecéwetemnel transmission er-
rors so as to minimize the average expected delay expeddncéhe clients. The be-
havior of some heuristics has been experimentally evaduateen modelling the chan-
nel error by means of the Bernoulli model as well as the sifiepliGilbert-Elliot one.



Extensive simulations showed that such heuristics givelgob-optimal solutions when
tested on benchmarks whose item popularities follow Zigfriiutions. In particular, for
small channel error probabilities, the average expectéal/dd the proposed solutions
is almost the same as the optimal one found in the case of elsawithout errors. It is
worth noting that, since the problem is computationallydntable (that is)V P-hard)
for non-unit lengths and error-free channels, it remaitisigiable also in the presence
of errors for non-unit lengths, while it can be polynomiadlylved for unit-lengths. As
regard to the non-unit length case, an interesting opentigueis that of determining
whether a closed formula for computing the item expectedydedxists or not when the
Gilbert-Elliot model is adopted. Moreover, an interestaxgension of the problem to be
investigated is that considering channels which do not tlawesame error probabilities.
Some preliminary results on such an extension are repartgg.i
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