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Abstract

Given a set of servic e requests, each char acterize d

by a temporal interval and a category, an integer k,

and an integer hc for each category c, the Server A l-

location with Bounded Simultaneous Requests problem

consists in assigning a server to each request in such

a way that at most k mutually simultaneous requests

are assigned to the same server at the same time, out

of which at most hc are of category c, and the min-

imum number of servers is use d. Sinc ethis problem

is computationally intr actable, a 2-appr oximationon-

line algorithm is exhibite dwhich asymptotically gives

a
�
2� h

k

�
-appr oximation,where h = minfhcg. Gen-

eralizations of the problem are considered, where each

request r is also char acterized by a bandwidth rate wr,

and the sum of the bandwidth rates of the simultaneous

requests is bounded, and where each request is char-

acterize d also by a gender bandwidth. Such gener al-

izations contain Bin-Packing and Multiprocessor T ask

sche dulingas special cases, and they admit on-line al-

gorithms providing constant approximations.

1 Introduction

An infostation is an isolated pocket area with small
coverage(about a hundred of meters) of high band-
width connectivity (at least a megabit per second) that
collects information requests of mobile users and de-
livers data while users are going through the coverage
area. The available bandwidth depends on the distance
between the mobile user and the center of the cover-
age area, increasing with decreasing distance [4, 8, 9].
Infostations could be located along roadways, at air-
ports, in campuses, and they can provide access ports
to Internet and/or access to services managed locally.

The infostation system may retriev e the requested
data from remote gateways, may provide Internet ac-
cess, and may home local services (suc h as building
access, credit card transactions, and map downloads).
The mobile user connection starts when it �rst senses
the infostation's presence and �nishes when it leaves

�This work is partially supported by MIUR-RealWine Re-
search Program.

the coverage area. Depending on the mobility options,
three kinds of users are characterized: drive-through,
walk-through, and sit-through. According to the mobil-
ity options, the bit-rate connection is high variable for
drive-through, low variable for walk-through, and �xed
for sit-through. In addition to radio broadcast com-
munication, infostations create opportunities to deliver
new wireless information services dedicated to single-
users, which could be supported for example by in-
frared technologies.

Each mobile user going through the infostation may
require a data service out of a �nite set of possible ser-
vice categories available. The admission control, i.e.,
the task of deciding whether or not a certain request
will be admitted, is essential. In fact, a user going
through an infostation to obtain a (toll) service is not
disposed to have its request delayed or refused. Hence,
the service dropping probability must be kept as low
as possible. F or this purpose, many admission con-
trol and bandwidth allocation schemes for infostations
maintain a pool of servers so that when a request ar-
rives it is immediately and irrevocably assigned to a
server thus clearing the service dropping probability.
Precisely, once a request is admitted, the infostation
assigns a temporal interval and a proper bandwidth for
serving the request, depending on the service category,
on the size of the data required and on the mobility
kind of the user, as shown in T able 1 for a sample of
requests with their actual parameters. Moreover, the
infostation decides whether the request may be served
locally or through a remote gateway. In both cases, a
server (either in the infostation or in the gateway) is
allocated on demand to the request during the assigned
temporal interval. The request is immediately assigned
to its serv er without knowing the future, namely with
no knowledge of the next request. The server, selected
out of the prede�ned server pool, serves the requests
on-line, that is in an ongoing manner as they become
available. Moreover, each server may serve more than
one request simultaneously but it is subject to some
architecture constraints. F or example, no more than
k requests could be served simultaneously by a local
server supporting k infrared channels or by a gateway
server connected to k infostations. Similarly, no more
than h services of the same category can bedeliv ered
simultaneously due to access constraints on the original
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Category Kbps Seconds
Low rate High rate

FTP download 10000 100 10
Video streams 5000 50 5
Audio streams

E-mail attachments 512 5 .5
E-mails

W eb Bro wsing 64 .6 .06

Table 1. Example of actual time in tervalsrequired to
serve di�erent kinds of requests.

data, such as softw are licenses, limited on line subscrip-
tions and private access.

In this paper, a particular problem arising in the
design of infostation systems is faced which consists in
�nding scheduling algorithms for allocating the mini-
mum number of servers to the user requests in such
a w ay that the temporal, architectural and data con-
strain ts are satis�ed. In details, a service request r will
be modeled by a service category cr and a temporal
interval Ir = [sr; er) with starting time sr and ending

time er. Two requests are simultaneous if their tempo-
ral in tervals o verlap.The input of the problem consists
of a set R of service requests, a bound k on the number
of mutually simultaneous requests to be served by the
same server at the same time, and a set C of service cat-
egories with each category c characterized by a bound
hc. The output is a mapping from the requests in R

to the servers that uses the minimum possible number
of servers to assign all the requests in R subject to the
constraints that the same server receives at most k mu-
tually simultaneous requests at the same time, out of
which at most hc are of category c. Such a problem
is called in this paper Server Allocation with Bounded

Simultaneous Requests.

It is worth y to note that, equating servers with bins,
and requests with items, the above problem is similar
to a generalization of Bin-Packing, known as Dynamic

Bin-Packing [1], where in addition to size constraints
on the bins the items are characterized by an arrival
and a departure time, and repacking of already packed
items is allow edeac h time a new item arriv es. The
problem considered in this paper, in contrast, does not
allo w repac kingand has capacity constraints also on
the bin size for each category. F urthermore, equating
servers with processors and requests with tasks, the
above problem becomes a generalization of determin-
istic multiprocessor scheduling with task release times
and deadlines [6], where in addition each processor can
execute more than one task at the same time.

In Section 2, it is sho wn that Server Allocation
with Bounded Simultaneous Requests is computation-
ally intractable. Section 3 sho ws that the problem

cannot be �-approximated with � < 4
3 . Moreover, a

2-approximation on-line algorithm is exhibited which
asymptotically gives a

�
2� h

k

�
-approximation, where

h = minc2C hc. In Section 4, a generalization of the
problem is considered where each request r is also char-
acterized by an integer bandwidth rate wr, and the
bounds on the number of simultaneous requests to be
served b ythe same server are replaced by bounds on
the sum of the bandwidth rates of the simultaneous re-
quests assigned to the same server. F or this problem,
on-line and o�-line algorithms are proposed which give
a constant approximation. Other tw ogeneralizations
are proposed in Section 5 in which each request is char-
acterized either by a multi-dimensional bandwidth rate
or b y both a bandwidth rate and a gender bandwidth
associated to the category of the requests.

2 Computational Intractability

The Server Allocation with Bounded Simultaneous
Requests problem on a set R = fr1; : : : ; rng of requests
can be formulated as a coloring problem on the corre-
sponding set I = fI1; : : : ; Ing of temporal intervals.

Problem 1. (Interval Coloring with Bounded Over-
lapping) Given a set I of intervals each belonging to a

category, an integer k, and an integer hc for e ach c at-

egory c, assign a color to each interval in such a way

that at most k mutually overlapping intervals receive

the same color, at most hc mutually overlapping inter-

vals all having category c receive the same color, and

the minimum number of colors is used.

In order to prove that Problem 1 is computationally
in tractable, the following simpli�ed decisional formula-
tion is considered, where there is a bound hc = 1 for
each category c.

Problem 2. (Interval Coloring with Unit Bounded
Categories) Given a set I of intervals each belonging

to a category, and two integers k and b, decide whether

b colors are enough to assign a color to each interval

in such a way that at most k mutually overlapping in-

tervals receive the same color and no two overlapping

intervals with the same category receive the same color.

The graph coloring problem below is well-known to
be NP -complete [2], even if b � 3.

Problem 3. (Chromatic Number) Given an integer b

and an undirected graph G = (V;E), decide whether

the nodes in V can be color edwith b colors in such a

way that adjacent nodes receive di�erent colors.

Recall that a stable set of a graph G = (V;E) is a
subset S of nodes in V such that no two nodes in S are
adjacent.
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Problem 4. (Balanced Coloring) Given two integers b

and k, and an undirected graph G = (V;E) of kb nodes,
decide whether V can be partitioned into b stable sets

each of size k.

Lemma 2.1. Balanced Coloring is NP -complete,

even if b � 3.

Pr oof: Chromatic Number is reduced in polyno-
mial time to Balanced Coloring as follows. Given an
instance of Chromatic Number, namely b and G =
(V;E), let k = jV j and G0 = (V 0; E0) be the graph
obtained by considering b disjoint copies of G. Clearly,
G can be colored with b colors if and only if V 0 can be
partitioned into b stable sets each of size k.

Theorem 2.2. Interval Coloring with Unit Bounded

Categories is NP -complete, even if b � 3.

Pr oof: Given an instance of Balanced Coloring, that
is b; k, and G = (V;E), an instance of Problem 2 is
constructed in such a way that there are as many cat-
egories as there are nodes in V , a subset of in tervals
correponds to each node in V so that all such intervals
are forced to receive the same color, and some pairs
of intersecting intervals belong to the same category if
and only if their corresponding nodes in V are adjacent.

Speci�cally, let kb = jV j and m = jEj. Take the set
of categories as C = f1; 2; : : : ; kbg. Construct 2kb+2m
intervals as follows. For each generic node v 2 V , let
v1; : : : ; v` be the neighbours of v (indexed, for the sake
of simplicity, so that vi < vi+1). The following ` + 2
intervals correspond to node v:

� I0v = [0; 2v � 1) with category c0v = v,

� Ivv = [2v; 2kb+ 1) with category cvv = v,

� Iviv =
�
2v � 1 + i�1

`
; 2v � 1 + i

`

�
with category

cviv = vi, for i = 1; : : : ; `.

If a node v is isolated, that is it has no neighbour, then
a single interval Iv = [0; 2kb+ 1) with category cv = v

corresponds to it.
Note that [v; u] 2 E, with v < u, if and only if both

the following conditions hold:

1. Iuv \ I0u 6= ; and cuv = c0u = u, and

2. Ivu \ Ivv 6= ; and cvu = cvv = v.

Thus, adjacency between two nodes u and v in G is
coded by tw opairs of overlapping intervals in I with
categories u and v, which cannot be colored the same.

As an example, Figure 1 depicts all the 2kb + 2m
intervals of I corresponding to a graph G = (V;E)
with kb = 6 nodes and m = 10 edges (in such a �gure,

5

3

4

2

1

6

G=(V,E)

k=2    b=3

3 1 2 4 5 3

4 41 356

1

2

3

4

5

6

1 2 3 4 1

52 3 465

1 3 5 22

0 2kb+1

66 4 5

Figure 1. Example of reduction from Balanced Coloring
to Interval Coloring with Unit Bounded Categories (cate-
gories are represen ted by num bers abo ve the intervals).

k = 2 and b = 3). Assume that G can be colored with
b colors. Assign to all the intervals I0v ; I

v
v ; I

v1
v ; : : : ; Iv`v

the same color that node v has in G. Clearly, if nodes
v and u in G are colored the same, then they are not
adjacent. Thus all the intervals corresponding to v and
u can receive the same color. Moreover, since the same
color appears in G exactly k times, exactly k mutually
overlapping intervals of I receiv e the same color.

Conversely ,assume that all the intervals in I can
be colored with b colors. Observe that for eac hv, all
the intervals I0v ; I

v
v ; I

v1
v ; : : : ; Iv`v must be colored the

same (otherwise, by construction, at least b + 1 col-
ors would be required). Therefore, assign such a color
also to the node v of G. If I0v ; I

v
v ; I

v1
v ; : : : ; Iv`v and

I0u; I
u
u ; I

u1
u ; : : : ; I

up
u ha ve the same color, then nodesv

and u are not adjacent in G, and thus they can receive
the same color. Moreover, since k mutually overlap-
ping intervals are colored the same, the same color is
used in G exactly k times.

3 Interval Coloring with Bounded

Overlapping

An �-approximation algorithm for a minimization
problem is a polynomial-time algorithm producing a
solution of value appr(x) on input x such that, for all
the inputs x,

appr(x) � � � opt(x);

where opt(x) is the value of the optimal solution on
x. In other words, the approximate solution is guar-
an teed to never be greater than � times the optimal
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solution [2]. F or the sake of simplicity, from no won,
appr(x) and opt(x) will be simply denoted by appr and
opt, respectively.

Corollary 3.1. The optimization version of Interval

Coloring with Unit Bounded Categories admits no �-

approximation algorithm for � < 4
3 .

Pr oof: By the reduction in the proof of Theorem 2.2,
if there is an �-approximation algorithm with � < 4

3 ,
then there is a decision algorithm for Balanced Coloring
with b = 3.

Assume that the intervals inI arriv e one by one, and
are indexed by non-decreasing starting times. When
an interval Ii arriv es, it is immediately and irrevocably
colored, and the next intervalIi+1 becomes known only
after Ii has been colored. An algorithm that works in
suc h an ongoing manner is said on-line [5]. On-line
algorithms are opposed to o�-line algorithms, where
the in tervals are not colored as they become available,
but they are all colored only after the entire sequence
I of intervals is known.

A simple polynomial-time on-line algorithm for the
more general Interval Coloring with Bounded Overlap-
ping can be designed based on the following greedy
strategy:

Algorithm 1 Greedy (Ii)

� To color intervalIi use, if possible, a color already
used for previous intervals, otherwise use a brand
new color.

Theorem 3.2. A lgorithm Gr eedy provides a 2-
approximation and, asymptotically, a

�
2� h

k

�
-

approximation, where h = minc2C hc, for Interval

Coloring with Bounded Overlapping.

Pr oof: Let appr = � be the solution given by the
algorithm and assume the colors 1; : : : ; � ha vebeen
in troduced in this order. Let Ir = [sr; er) be the �rst
interval colored �. Let 
1 be the set of intervals in I

containing sr and let 
2 be the set of intervals in I

containing sr and with category cr. Hence, 
2 � 
1.
Let !1 = j
1j and !2 = j
2j. Clearly, opt � d!1

k
e

and opt � d !2
hcr

e. Color � was introduced to color Ir

because, for every  2 f1; : : : ; � � 1g, at least one of
the following tw o conditions held:

1. at least k intervals in 
1 ha ve color;

2. at least hcr intervals in 
2 ha ve color .

For i = 1; 2, let ni be the number of colors in
f1; : : : ; � � 1g for which condition i holds (if for a
color both conditions hold, then choose one of them
arbitrarily). Hence, n1 + n2 = � � 1 or, equivalently,
appr = � = n1+n2+1. Clearly, !1 � kn1+ hcrn2+1
and !2 � hcrn2 + 1. Therefore:

opt � max

�l!1
k

m
;

�
!2

hcr

��
�

max

��
kn1 + hcrn2 + 1

k

�
;

�
hcrn2 + 1

hcr

��
�

max

�
n1 +

�
hcrn2 + 1

k

�
;n2 + 1

�
�

max

�
n1 +

h

k
n2;n2 + 1

�

where h = minc2C hc.
If n2 + 1 � n1 +

h
k
n2, then:

appr

opt
�

n1 + n2 + 1

n2 + 1
�

n2(1�
h
k
) + 1 + n2 + 1

n2 + 1
= 2�

h

k

n2

n2 + 1
� 2

If n2 + 1 � n1 +
h
k
n2, then:

appr

opt
�

n1 + n2 + 1

n1 +
h
k
n2

�

n1 + n1 +
h
k
n2

n1 +
h
k
n2

= 1 +
n1

n1 +
h
k
n2

� 2

Therefore, Algorithm 1 gives a 2-approximation.
T oachiev e the asymptotic approximation, �rst ob-

serve that opt � max
�
n1 +

h
k
n2;n2

	
. Moreover, when

opt ! 1, also � ! 1, and hence �0 = � � 1 ! 1,
too. The ratio appr

opt
is maximum when opt is mini-

mum, that is, since opt � n2 and opt � n1 +
h
k
n2, for

opt0 = n2 = n1 +
h
k
n2. Thus,

appr

opt
!

�0

opt0
=

n1 + n2

n2
=

(1� h
k
)n2 + n2

n2
= 2�

h

k

Hence, asymptotically, Algorithm 1 gives a
�
2� h

k

�
-

approximation.

The following Corollary 3.3 shows that the
�
2� h

k

�
-

approximation is the best possible for Algorithm 1,
ev en in the case that h = 1, k = 2, and no interval
properly contains another interval.
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Corollary 3.3. A lgorithm Gr eedy admits no �-

approximation with � < 2 � 1
k
for Interval Coloring

with Unit Bounded Categories.

Pr oof: It is sho wn that there is an instance for which
the (2� 1

k
)-approximation is achiev able.Consider the

particular input instance consisting of the k2 mutually
overlapping intervals I1; I2 : : : ; Ik2 , where the i-th in-
terval Ii = [i; i+ k2) has category

ci =

�
i if 1 � i � k2 � k

k2 � k + 1 if k2 � k + 1 � i � k2

The Greedy algorithm colors the intervalIi as soon
as it becomes available, that is at time i, thus assigning
color 1 to I1; : : : ; Ik , color 2 to Ik+1; : : : ; I2k, and so on.
In particular, color j is assigned to I(j�1)k+1; : : : ; Ijk ,
and color k�1 is given to I(k�2)k+1; : : : ; I(k�1)k . More-
over, for the remaining in tervals Ik2�k+1; : : : ; Ik2 , k
additional colors are employed, one for eac h interval.
Overall, 2k � 1 colors are used. How ev er,an op-
timal o�-line algorithm, that kno wsin advance the
en tire sequence of in tervals, uses k colors assigning
color 1 to intervals I1; : : : ; Ik�1 and interval Ik2�k+1,
color 2 to intervals Ik; : : : ; I2(k�1) and Ik2�k+2, and
so on. In particular, color j is assigned to in tervals
I(j�1)(k�1)+1; : : : ; Ij(k�1) and Ik2�k+j , while color k is
given to I(k�1)(k�1)+1; : : : ; Ik(k�1) and Ik2 . Therefore,
appr
opt

= 2k�1
k

= 2� 1
k
.

4 Interval Coloring with Weighted

Overlapping

Consider now a generalization of Server Allocation
with Bounded Simultaneous Requests, where each re-
quest r is also characterized by an integer bandwidth

rate wr, and the bounds on the number of simultaneous
requests to be served by the same server are replaced
by bounds on the sum of the bandwidth rates of the si-
multaneous requests assigned to the same server. Suc h
a problem can be formulated as a weigh ted generaliza-
tion of Problem 1 as follows.

Problem 5. (In tervalColoring with Weighted Over-
lapping) Given a set I of intervals, with each interval

Ir char acterized by a category cr and an integer weight

wr, an integer k, and an inte gerhc for each category

c, assign a color to each interval in such a way that

the sum of the weights for mutually overlapping inter-

vals receiving the same color is at most k, the sum of

the weights for mutually overlapping intervals of cate-

gory c receiving the same color is at most hc, and the

minimum number of colors is used.

More formally, denote by

� I [t] the intervals active at instant t, that is, I [t] =
fIr 2 I : sr � t � erg;

� I [c] the intervals belonging to the same category
c, that is I [c] = fIr 2 I : cr = cg; and

� I() the set of intervals colored .

Moreover, let I()[t] = I() \ I [t] be the inter-
vals colored  and activ e at instant t. Finally, let
I()[t][c] = I()[t] \ I [c] be the intervals of category
c, colored , and active at instant t.

The constraints on the sum of the weights for mutu-
ally overlapping intervals receiving the same color can
be stated as follows:X

Ir2I()[t]

wr � k 8, 8t (1)

X
Ir2I()[t][c]

wr � hc 8, 8t, 8c (2)

An approximation on-line algorithm for Problem 5
(which contains Bin-Packing [1] as a special case) is
presented below.

Algorithm 2 First-Color (Ii)

� To color interval Ii use the low est possible indexed
color among those already used for previous inter-
vals. If no such color exists, use a brand new color.

Theorem 4.1. A lgorithm First-Color asymptotically

provides a constant approximation for Interval Color-

ing with Weighted Overlapping.

Pr oof: Assume the on-line First-Color algorithm em-
plo ys� colors. Consider the �rst interval Ir = [sr; er)
which is colored �. A ttime sr, Ir cannot be colored
with any color in f1; : : : ; ��1g since otherwise at least
one of the constraints (1) and (2) would be vio-
lated. Two cases may occur, depending on whether
wr is smaller or larger than h

2 , where h = minc2C hc.

Case 1: Suppose wr �
h
2 . Let 
1 be the set of intervals

in I con tainingsr and let 
2 be the set of intervals in I
containing sr and having category cr. Let w(
1) (resp.,
w(
2)) be the sum of the weights of the intervals in 
1

(resp., 
2). Clearly, opt � dw(
1)
k

e and opt � dw(
2)
hcr

e.

Color � was used for Ir because, for ev ery  2
f1; : : : ; �� 1g, at least one of the following two condi-
tions held:

1. w(
1()) �
k
2 , where 
1() are the intervals in 
1

already colored ,

5
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2. w(
2()) �
hcr
2 , where 
2() are the intervals in


2 with category cr already colored .

For i = 1; 2, let ni be the number of colors in
f1; : : : ; � � 1g for which i holds (if for a color both
conditions hold, then choose one of them arbitrarily).

Hence, n1+n2 = �� 1. Clearly, w(
1) � n1
k
2 +n2

hcr
2

and w(
2) � n2
hcr
2 . Therefore,

opt � max

��
w(
1)

k

�
;

�
w(
2)

hcr

��
�

max

��
n1k + n2h

2k

�
;
ln2
2

m�

If n2
2 � n1k+n2h

2k , then:

appr

opt
� 2

n1 + n2 + 1

n2
�

2
n2(2�

h
k
) + 1

n2
! 2

�
2�

h

k

�

If n2
2 � n1k+n2h

2k , then:

appr

opt
�

n1 + n2 + 1
n1k+n2h

2k

=

2(n1 + n2 + 1)

n1 +
h
k
n2

� 4

by the bound proved in Theorem 3.2.
Case 2: Suppose wr >

h
2 . Two further subcases may

come up.

Case 2.1: For each color  2 fd�2 e; : : : ; ��1g at least
one of the two following conditions holds:

X
Ir2I()[sr]

wr �
k

2
(3)

X
Ir2I()[sr][c]

wr �
hc

2
for some c (4)

Therefore, the sum of the weights of the intervals
active at time sr is at least

h
2 b

�
2 c. Thus,

opt �

&
h
2 b

�
2 c

k

'
and

appr

opt
�

�
h
2
b�
2
c

k

!
5k

h

Case 2.2: There is a color  2 fd�2 e; : : : ; � � 1g for
which both conditions (3) and (4) do not hold.
Thus, there is an interval Ir = [sr; er), colored ,
of weight wr < h

2 . When Ir was colored,  w as
the low est possible indexed color. Therefore, this
subcase reduces to Case 1 above loosing a factor
of 2.

It is worthy to note that in the case there are no con-
straints on the total weight of mutually overlapping in-
tervals of the same category, the above algorithm yields
a 4-approximation. This can be easily checked assum-
ing h = k in the proof of Theorem 4.1 and observing
that, in the Case 2.1, only condition (3) holds for all
the colors .

Moreover, note that the w orstapproximation con-
stant of Algorithm 2 is given by 5k

h
when k

h
> 8

5 ,
and by 8 otherwise. How ever, an o�-line algorithm
for Problem 5 can be proposed which guarantees an 8-
approximation even in the case that k

h
> 8

5 . The algo-
rithm runs three passes over the entire input sequence
I . Each pass scans the intervals inI by non decreasing
starting times and delivers a new set of colors. Hence,
denoted by �i the number of colors delivered in pass i,
the total number of colors employed is� = �1+�2+�3.

Algorithm 3 Three-Pass-Greedy (I)

Pass 1: Color all intervals Ir with wr >
k
2 ;

Pass 2: Color all the intervals Ir with wr >
1
2hcr ;

Pass 3: Color all the remaining intervals.

Note that, in the �rst pass, the same color cannot
be assigned to two overlapping intervals, and hence the
problem reduces to coloring an interval graph, which
can be done optimally in polynomial time [3]. There-
fore, �1 � opt. In the second and third passes, in-
stead, Algorithm 1 is employed. For the second pass
alone, an approximation of 3 can be shown by modify-
ing the proof of Theorem 3.2 obtaining �2 � 3�opt. F or
the third pass alone, the analysis on the approximation
guarantee of Theorem 3.2 can again be easily adapted
by loosing a factor of 2, thus having �3 � 4 � opt. As a
consequence, appr = �1 + �2 + �3 � 8 � opt.

5 F urtherGeneralizations

This section considers tw o generalizations of the
Server Allocation with Bounded Simultaneous Re-
quests problem, where each request r is characterized
by real bandwidths, normalized in [0; 1] for analogy
with the Bin-Packing problem [1].
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In the �rst generalization, which con tains Multi-
Dimensional Bin-Packing as a special case, eac h re-
quest r is characterized by a k-dimensional bandwidth

rate wr = (w
(1)
r ; : : : ; w

(k)
r ), where the c-th component

speci�es the bandwidth needed for the c-th category
and k is the number of categories, i.e. k = jCj. The
overall sum of the bandwidth rates of the simultane-
ous requests of the same category assigned to the same
serv er at the same time is bounded by 1, which implies
that the total sum of the bandwidth rates over all the
categories is bounded by k.

Problem 6. (In terval Coloring with Multi-
Dimensional Weigh ted Overlapping) Given a set

I of intervals, with each interval Ir char acterize dby

a k-dimensional weight wr = (w
(1)
r ; : : : ; w

(k)
r ), where

w
(c)
r 2 [0; 1], for 1 � c � k, assign a color to each

interval in such a way that the overall sum of the

weights of the same category for mutually overlapping

intervals receiving the same color is b ounded by 1.

More formally, according to the notations intro-
duced in Section 4, the constraints on the sum of the
w eigh ts of the same category for mutually overlapping
intervals receiving the same color can be stated as fol-
lows: X

Ir2I()[t][c]

w(c)
r � 1 8, 8t, 8c (5)

Note that the above constraints, added up over all the
categories in C, imply the follo wing redundant con-
strain ts:

kX
c=1

X
Ir2I()[t][c]

w(c)
r � k 8, 8t. (6)

Problem 6 can be solved on-line by Algorithm 2, intro-
duced in the previous section.

Theorem 5.1. The First-Color algorithm provides a

4k-appr oximation for Interval Coloring with Multi-

Dimensional Weighted Overlapping.

Pr oof: Assume the on-line algorithm employs � col-
ors. Consider the �rst in tervalIr = [sr; er) which is
colored �. At time sr, Ir cannot be colored with any
color in f1; : : : ; �� 1g.

Consider tw o cases.
Case 1: There is a color  among fd�2 e; : : : ; � � 1g
suc h that for each component c, with 1 � c � k:

X
Ir2I()[sr ][c]

w(c)
r �

1

2

Let Ir0 be any interval in I()[sr][c]. Clearly, w
(c)
r0 �

1
2 , for all c. Consider no w instant sr0 , when interval

Ir0 w as colored � d�2 e. Since Ir0 cannot be colored

with any color in f1; : : : ; d�2 e � 1g, then for every  2

f1; : : : ; d�2 e � 1g and for every c, with 1 � c � k:

X
Ir2I()[sr0 ][cr0 ]

w(c)
r >

1

2

Hence,

opt �
X

Ir2I[sr0 ]

1

k

kX
c=1

w(c)
r �

1

k

d�
2
e�1X

=1

X
Ir2I()[sr0 ]

kX
c=1

w(c)
r �

1

k

d �
2
e�1X

=1

1

2
�

1

k

�

2

1

2
�

�

4k

Case 2: For every color  in fd�2 e; : : : ; � � 1g, there
is a category c, with 1 � c � k, such that

X
Ir2I()[sr][c]

w(c)
r >

1

2
:

By a reasoning analogous to Case 1, it follows that:

opt �
X

Ir2I[sr0 ]

1

k

kX
c=1

w(c)
r �

1

k

��1X
=d�

2
e

X
Ir2I()[sr0 ]

kX
c=1

w(c)
r �

1

k

��1X
=d�

2
e

1

2
�

1

k

�

2

1

2
�

�

4k

Since appr = �, an approximation of 4k holds.

The above problem, when considered as an o�-line
problem, is APX-hard since it contains a multidimen-
sional bin-packing as a special case. Multidimensional
bin-packing is APX-hard [7] already for jCj = 2.
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In the second generalization, each request r is char-
acterized by a gender bandwidth rate gr;cr associated
to the category cr and by a bandwidth rate wr. The
overall sum of the bandwidth rates of the simultane-
ous requests assigned to the same serv er at the same
time is bounded by 1, as well as the overall sum of the
gender bandwidth rates of the simultaneous requests of
the same category assigned to the same server at the
same time, which is also bounded by 1.

Problem 7. (In terval Coloring with Double Weighted
Overlapping) Given a set I of intervals, with each in-

terval Ir char acterize d by a gender weightgr;cr 2 (0; 1]
asso ciated to the category cr and by a bandwidth weight

wr 2 (0; 1], assign a color to e ach interval in such a way

that the overall sum of the gender weights for mutually

overlapping intervals of the same category r eceiving the

same color is b ounded by 1, the overall sum of the band-

width weights for mutually overlapping intervals receiv-

ing the same color is bounded by 1, and the minimum

number of colors is used.

Formally, the constraints of Problem 7 are given be-
low: X

Ir2I()[t]

wr � 1 8, 8t (7)

X
Ir2I()[t][c]

gr;c � 1 8, 8t, 8c (8)

Problem 7 can again be solved on-line by Algorithm 2,
in troduced in the previous section.

Theorem 5.2. The First-Color algorithm provides a

10-appr oximation for Interval Coloring with Double

Weighted Overlapping.

6 Conclusions

This paper has considered sev eral on-line approxi-
mation algorithms for problems arising in infostations,
where a set of requests characterized by categories and
temporal intervals ha veto be assigned to servers in
suc h a w aythat a bounded number of simultaneous
requests are assigned to the same server and the num-
ber of servers is minimized. How ever, several questions
still remain open. For instance, one could low erthe
approximation bounds deriv edfor Problems 5, 6 and
7. Moreover, one could consider the scenario in which
the number of servers is given in input, eac h request
has a deadline, and the goal is to minimize the overall
completion time for all the requests.
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